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Abstract 
 

In this Thesis we have presented detailed theoretical and computer simulation studies 

on several equilibrium and dynamical processes that occur in solution phase. The 

systems involved are pure and mixed-solvents, electrolyte solutions and room 

temperature ionic liquids (RTIL). A microscopic theory, known as extended 

molecular hydrodynamic theory (EMHT), has been generalized in order to study ion 

transport and solvation dynamics in the above systems.  An integral equation theory, 

based on the mean spherical approximation (MSA), has been developed to study the 

preferential solvation in mixed-solvent electrolyte solutions.  The contributions to the 

dynamic Stokes’ shift of a dipolar probe dissolved in RTIL have been separated and 

analyzed. In addition, the reasons for the failure of dielectric relaxation based theories 

in describing the Stokes’ shift dynamics in the ionic liquids are discussed. Effects of 

spatial heterogeneity of the structure on ion transport in water-tert butyl alcohol 

(TBA) mixture have been explored.  

 

In the first chapter of the Thesis an introduction of the present work along with the 

review of relevant literature has been provided. Chapter 2 contains the results of our 

theoretical study of limiting ionic conductivity of singly charged ions in liquid 

formamide and dynamical solvent response toward a photoexcited dipolar solute 

dissolved in the same medium. The calculated results are compared with existing 

experimental results to check the predictive power of the simple theoretical scheme 

for this complex liquid.  Chapter 3 discusses our studies on ion diffusion in aqueous 

mixtures of tert butyl alcohol (TBA). In chapter 4 a semi-molecular theory based on 

mean spherical approximation (MSA) model has been developed for a system of ions 

dissolved in a mixture of asymmetric (different sizes and dipole moments) dipolar 

solvents.  Solvation dynamics and dynamic Stokes’ shift of dipolar probes in ionic 

liquids of different types have been studied in chapters 5 and 6. The origin of fast and 

slow time scales in solvation dynamics and their relation to the observed large 

dynamic Stokes’ shifts in these liquids have been explored in these chapters. 

Molecular dynamics simulation studies of water-TBA mixtures covering a wide 

composition range have been carried out and the results are discussed in chapter 7. 

Chapter 8 then ends with a general conclusion where a few research problems have 

been suggested for future study.   
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Chapter 1 

 
Introduction   

Chemical reactions constitute a central part both in chemistry and biology.1-17 

Usually, such reactions involve exchange of atoms or groups, rearrangement of 

groups around a double bond,  transfer of charge or a proton, enzyme-catalyzed 

cleavage of a bio-active moiety, micellization, polymerization or even protein folding. 

These reactions, more often than not, occur in solution phase where more than one 

solvent component may be present. Many of the above chemical reactions can be 

understood in terms of potential energy surface where a sizeable barrier separates the 

product from the reactant. Understanding the role of a medium on a given reaction 

then revolves around understanding the medium-induced modifications of the reaction 

barrier and passage of the reactant to the product through the barrier region. 

Therefore, reaction in solution phase is modified via both the static and dynamic 

medium effects. 

 

Solvent static effects on a reaction involve the modification of the barrier height via 

the solvent polarity. The dynamical part of the solvent influence on the rate of a given 

reaction depends on how fast the solvent molecules solvate both the reactants and 

products. How a given reaction dynamically couples to its solvent environment 

depends on the solvation time scales. In ultrafast solvents like water, alcohol and 

acetonitrile, these time scales range from tens of femtosecond to few picoseconds.4,18-

19 In usual time resolved fluorescence spectroscopic techniques these time scales are 

probed by monitoring the fluorescence emission frequency of a laser excited 

fluorescent molecule.4,18-19 As inter-diffusion and preferential solvation significantly 

slows down the dynamics in binary mixtures than in pure solvents, solvent effects on 

chemical reactions are expected to be more complex in binary liquid mixtures.20-25   

The advantage of solvent mixtures over pure solvents is that by changing the 

composition of the mixture one can tune the polarity, solubility, viscosity and many of 

its static and dynamic properties. Similar advantage is with electrolyte solution where 

one can change the average polarity of the medium by changing the electrolyte 
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concentration in the solution. In addition to electrolyte-induced modification in 

solution polarity, the interactions of the reactant with the dissociated ions, ion-pairs 

and, other charged and neutral species can significantly alter both the rate and yield of 

a chemical reaction.26 Another class of solvent - room temperature ionic liquids- 

which can act both as electrolyte and solvent are now emerging as a useful alternative 

reaction media because of its high thermal stability, low volatility and a broad liquid 

range.27-33 Because of these reasons, attention is now shifted from pure to mixed 

solvents, electrolyte solutions and room temperature ionic liquids. However, an 

important feature has always been to explore how different dynamically these 

complex systems are from the relatively better understood conventional polar solvents 

at ambient condition. As will be seen later, this has also been one of our goals with 

the calculations performed for several systems considered in this Thesis. 

 

Apart from controlling the reaction rate, dynamics of solvation has also been found to 

play an important role in ion transport processes.14-15,34-37 An extended molecular 

hydrodynamic theory, which was developed earlier to study polar solvation dynamics 

in simple dipolar solvents, has been found to be very successful in predicting the 

experimentally measured limiting ionic mobility of small uni-positive ions in several 

complex polar solvents, such as, water and monohydroxy alcohols. These studies have 

indicated a very close connection between the ultrafast solvation response and ion 

diffusion in these dipolar solvents.  Solvents of more complex character where, in 

addition to intermolecular hydrogen bonding, some degree of polymerization also 

exists (for example, formamide), have not been considered earlier for exploring the 

inter-connection between the dynamic solvation response and ionic mobility.   

 

Another interesting problem related to ion transport is the experimentally observed 

non-monotonic alcohol mole fraction dependence of limiting ionic conductivity of 

alkali metal ions in the water-rich region of aqueous mixtures of tertiary butyl 

alcohol.38 Eventhough these results are known for a pretty long time, one does not 

know what are the contributions of the solution structure and dynamics to these 

observed dependence. If one considers the mole fraction dependence of either 

viscosity or dielectric relaxation times in this region,38-39 one does not find any non-

linearity in them. However, the available dielectric relaxation data39 does indicate 

presence of a stretching exponent which may be a signature of the microscopic 
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heterogeneity present in water-TBA mixtures. Extensive experimental40-48 and 

computer simulation49-57 studies have revealed microscopic solution heterogeneity in 

these mixtures and alcohol mole-fraction induced solution structural transition from 

the tetrahedral water-like hydrogen bonding network to alcohol-like zigzag structure.  

One therefore wonders what could be the possible effects of such structural aspects on 

the polarization structure around an ion moving through an aqueous mixture of TBA. 

Since in such a mixture microscopic heterogeneity is induced by the hydrophobic 

interaction and polarization structure around an ion in it is governed by the 

preferential solvation, it becomes a non-trivial task to include all these aspects in a 

simple analytical theory that desires to explain the experimentally observed ionic 

conductivity. Moreover, no theory exists in the literature that even qualitatively 

describes static structural aspects of a ‘homogeneous’ solution where three distinct 

components – two different dipolar solvent species and ions – are present in a single 

solution phase.  In this Thesis an attempt has been made to develop a semi-molecular 

theory based on the mean spherical approximation (MSA) formalism in order to 

calculate the microscopic polarization around an ion dissolved in a binary polar 

mixture.  

 

As expected, the theory that assumes a priori the solution homogeneity cannot 

describe properly the solution structure that is expected to possess microscopic 

heterogeneity due to hydrophobic and/or H-bonding interactions. Since interaction 

among the tertiary butyl groups in TBA molecules leads to domain formation in 

aqueous water-TBA mixtures, an MSA type description for the static correlations is 

bound to be inaccurate. As a result, the use of these correlations as input for the 

calculations of ion mobility lead to insufficient depiction of the composition 

dependence of limiting ionic conductivity in water-TBA mixtures. Logically then one 

should carry out computer simulation studies with realistic interaction potential 

functions for these mixtures at various compositions and use the simulated static 

correlations to explore the reasons that render the non-monotonic composition 

dependence of the limiting ionic conductivity. One can of course set up extended 

reference interaction site model (XRISM) calculations for the solution static structure 

factor but that is also a numerically extensive technique. Considering all these, 

molecular dynamics simulation studies of water-TBA mixtures have been carried out 

for several TBA mole fractions. These simulations serve at least two purposes. First, it 
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supplies semi-accurate static correlations required for the calculations of limiting 

ionic conductivity. Second, it provides an opportunity to study the alcohol mole 

fraction dependence of the self and crossed diffusion coefficients in these mixtures. 

The availability of experimental results for some of these mixtures makes a direct 

comparison with simulated results possible and thus provides an opportunity to test 

the ability of the model potentials (used in simulation studies here) for describing the 

structural aspects of real solutions. 

  

Since the quest for suitable reaction media continues, newer systems emerge with 

certain physico-chemical properties that possess distinct advantages over the 

conventional organic solvents or their mixtures. Room temperature ionic liquids, and 

salts that become liquid ~10-20 K above the room temperature are now increasingly 

used as alternative reaction media not only in laboratory for organic synthesis58 but 

also in chemical industries for large scale production.27-28      Electrolyte solutions in 

binary polar solvent mixtures,59 and mixtures of inorganic salts with acetamide and 

substituted acetamide60 are also other examples which have been in use as alternative 

reaction media. While some measurements on dynamical aspects of ionic liquids have 

begun to emerge, similar studies for electrolyte solutions of binary solvent mixtures 

and solutions of acetamide with inorganic salts are still lacking. For example, there 

exists only one dielectric relaxation study of (acetamide + NaSCN) mixture even-

though such mixtures are very  interesting systems as the degree of super-cooling 

depends on the identity and charge of the ions. Dynamic Stokes’ shift measurements 

and dielectric relaxation studies of several imidazolium ionic liquids have revealed 

the presence of extremely fast times scales which are reminiscent of those in 

conventional dipolar solvents. These results as well as the observation of large 

Stokes’ shifts for dipolar solute probes dissolved in these highly viscous liquids of 

low dielectric constant fuels the debate as what could be the possible reasons for such 

fast time scales and large dynamic Stokes’ shifts. An attempt has been made in the 

present Thesis to separate out the dipole-dipole and dipole-ion contributions to the 

observed shifts. In addition, the origin of fast time scales in some of the ionic liquids 

has been investigated and relationship between solvation energy relaxation of an 

excited dipolar solute and the frequency dependent dielectric function of these 

explored. Note that earlier studies have found strong interconnection between the 

solvation dynamics and dielectric relaxation for common dipolar solvents.34  
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The present Thesis is therefore divided in several chapters where the next chapter 

(chapter 2) contains the results on our theoretical studies of limiting ionic conductivity 

and solvation dynamics in formamide at room temperature. Note the calculation 

method used here is based on a self-consistent extended molecular hydrodynamic 

theory (EMHT) developed earlier34-37 to study similar problems in simple polar 

solvents. The calculated results are compared with experimental data.61 The 

temperature dependence of total ionic conductivity of a given uni-univalent 

electrolyte in formamide and solvation dynamics of a dissolved dipolar probe have 

also been studied. The effects of dynamic polar solvation response on ionic 

conductivity have been investigated by studying the time dependent progress of 

solvation of a polarity probe dissolved in formamide. The intermolecular libration62-63 

bands which are often detected in the range of 100-200 cm-1 in formamide are 

systematically incorporated in the calculation to investigate their role in determining 

both the conductivity and the ultrafast polar solvation response in formamide.  

 

The same EMHT theory is then used to describe the observed composition 

dependence of the limiting ionic conductivity of monovalent ions in aqueous mixtures 

of TBA.38 The numerical results and their comparisons with experimental data are 

provided in chapter 3. The effects of spatial heterogeneity in water-TBA solutions on 

ionic mobility are incorporated via using the simulated static correlations as input to 

the theory. This leads to a very good agreement between theory and experiments and 

indicate that it is the solution structure that plays the key role in producing the non-

monotonic composition dependence of limiting ionic conductivity of alkali metal ions 

in the water-rich region of aqueous solutions of TBA.  

 

Chapter 4 describes a semi-molecular theory (based on the MSA model64-65) 

developed to investigate the role of partial solvent polarization densities on Born free 

energy of solvation for an ion dissolved in a completely asymmetric binary dipolar 

mixture. The differences in solvent diameters, dipole moments and ionic size are 

incorporated systematically within the MSA framework.66-70 Subsequently, the theory 

is used to investigate the role of ion-solvent and solvent-solvent size ratios in 

determining the non-ideality in Born free energy of solvation of a uni-positive rigid 

ion in alcohol-water (associating solvents) and dimethylsulfoxide-acetonitrile (non-
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associating solvents) mixtures where the solvent components are represented only by 

their molecular diameters and dipole moments.   

 

Chapters 5 and 6 describe the numerical results obtained by using a semi-molecular 

theory for studying solvation dynamics and dynamic Stokes’ shift in several 

imidazolium and phosphonium ionic liquids. The theory developed for this study is 

also described in detail in these chapters.  Recent solvation dynamics experiments 

with common dipolar solvation probes in imidazolium ionic liquids (dipolar) have 

revealed large dynamic Stokes’ shifts and biphasic solvation energy relaxations.71-79  

For non-dipolar ionic liquids such as phosphonium cation based ionic liquids the 

dynamic Stokes’ shift   is rather small and solvation energy relaxation is found to be a 

single stretched-exponential decay function with a time constant of about couple of a 

nanosecond. The theory presented in these chapters has been able to explain the 

experimental results with surprising accuracy. The validity of the dynamic continuum 

model for describing the solvation dynamics in these ionic liquids have also been 

tested and reasons for failure described.  

 

It has already been mentioned that extensive experimental40-48 and simulation49-57 

studies have already been carried out to investigate the structural and dynamical 

aspects of water-TBA mixtures. But most of them were concentrated towards low 

TBA concentration region and less attention has been given to alcohol-rich region 

where several interesting properties of the mixture have been also reported. For 

example neutron diffraction experiment of Bowron et al. reveals the clustering of 

water molecules in this region.42 Interestingly the viscosity vs TBA molefraction 

curve also shows a shallow minimum near the concentrated alcohol composition.38 

Therefore, although the static and dynamic properties of these mixtures are well 

characterized, a comprehensive understanding of the anomalous features in alcohol-

rich region is still lacking.  In chapter 7 all atom flexible models of water and TBA 

have been used to carry out molecular dynamics (MD) simulations for water–TBA 

over whole composition range at 300K temperature. The simulated pair distribution 

functions for various sites of water and TBA molecules have been calculated in order 

to study the microscopy structure of these mixtures. Simulated static dielectric 

constants for the mixture (from orientational correlation functions as well as 

collective dipole-moment fluctuation) have been compared with the experimental 
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data. Self diffusion coefficients of the constituent solvent molecules have been 

calculated using velocity autocorrelation function (VACF) and mean square 

displacement (MSD), and compared with available experimental results.  In addition 

the simulated results for mutual (crossed) diffusion coefficient in the mixture have 

also been presented in this chapter. 

 

A brief concluding remark of this thesis work is presented in chapter 8. In addition, 

we have discussed a few research problems in this chapter which may be studied in 

future. 
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Chapter 2 

 
Ionic Conductivity and Solvation  

Dynamics in Formamide 

 
2.1 Introduction 

Formamide and its substituted derivatives are strongly associating molecular liquids 

and therefore constitute an important class of solvents.1-17 These liquids are 

characterized by large values of permanent dipole moments and dielectric constants. 

These solvents are also strong hydrogen bond (H-bond) donors and stronger H-bond 

acceptors than water. Owing to its unique H-bonding capability, formamide can exist 

as both cyclic dimers and linear chain oligomers in liquid phase at room temperature. 

The structures of formamide in its gas,18 amorphous,19 crystalline,20 and liquid phases 

have also been investigated through experiments,17-30 simulations31-35 and theoretical 

calculations.13,14 Recently, several authors have looked at equilibrium and excited 

state dynamics of formamide by using non-linear spectroscopic techniques.3-7 All 

these activities are partially motivated by the fact that formamide can be used as a 

model system for studying the hydrogen bonding interactions that occur between 

amido protons on a hydrated protein backbone. The aqueous mixture of formamide36-

38 could be an excellent model system for studying hydrogen bonding interactions that 

may occur in hydrated protein chains. Since formamide contains important structural 

units like carbonyl and amino groups as well as peptide bond, this molecule stands as 

the simplest building block for amide based catenane and rotaxane systems that are 

used as excellent molecular templates for tailoring materials with user-defined 

properties.39-42 It is also predicted that the coupling between the low frequency 

vibrations in formamide may play an important role for conformational changes and 

enzymatic actions in biological systems.43-44 For example, an out-of-plane vibrational 

mode of a hydrogen bonded system is likely to be involved in a conformational 

change in a biologically relevant moiety.  
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The investigation of ion transport and solvation processes in formamide is crucial 

because of the following reasons. A considerable amount of understanding about the 

role of ion-solvent interaction and the role of structure and dynamics of solvent in 

determining ion mobility can be achieved by studying ion transport in electrolyte 

solutions.45-53 The discovery of biphasic polar solvation response49-53 has motivated 

further studies to answer the following question: To what extent can the ultrafast 

solvation response of sub-pico-second time scale control a diffusive process like ion 

conductance which takes place on a time scale of tens of pico-seconds or even longer? 

 

One of the central quantities in the study of transport properties in electrolyte 

solutions is the ionic conductance (Λ). In the low concentration limit of strong 

electrolytes where the dissociation is assumed to be complete, the concentration 

dependence of conductivity in solutions of polar solvents such as formamide, 

substituted amides, water, acetonitrile and alcohols is described by the Kohlrausch’s 

law as follows:45-48 

 

                                    cκΛ=Λm −0  ,                                                                   (2.1)      

                                                                            

where Λm
 represents the equivalent  molar conductivity, Λ0 is its limiting value at         

infinite dilution, κ is a coefficient that is found to depend more on the nature of the  

electrolyte than on its specific identity. Extrapolation of Λm to zero ion concentration 

produces Λ0.  

 

The equivalent conductivity at infinite dilution, Λ0, is essentially related to the ion 

mobility U under the influence of externally applied weak electric filed in the 

following manner:45-47 

 

                               | | | |
ionrAη

Fq=
ς
Fq=UF=Λ

0
0   ,                                                     (2.2) 

 

where F stands for Faraday constant and q  the charge on the ion.  ς is the ionic 

friction coefficient. The third equality in the above equation arises if one assumes that  
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Figure 2.1: Comparison between the experimental results (solid circles) of Walden product 

(Λ0η0) for the uni-positive alkali, and tetra-alkyl ammonium ions as a function of inverse of 

crystallographic radius (rion
-1) for formamide at room temperature with the predicted values of 

Stokes’s law (solid line), Hubbard-Onsager theory (short dashed line), and continuum theory 

of Zwanzig (long dashed line). Here, the tetra-alkyl ammonium ions are represented by C1-C4 

where Cn= (CnH2n+1)4N+; n is from 1 to 4. The experimental data shown here are taken from J. 

Thomas and D. F. Evans, J. Phys. Chem., 74, 3812 (1970). 

 

the friction experienced by an ion with crystallographic radius, rion, moving through a 

solvent with viscosity, η0, can be obtained from hydrodynamics by using the Stokes’ 

law. A is a constant and the value of which depends upon boundary conditions (slip or 

stick). This immediately tells us that Λ0η0 is proportional to the inverse of the 

crystallographic radii of the ions in a given solvent. This is known as the Walden’s 

rule and was found to be valid for large singly charged ions.45-48 However, as the ions 

become smaller, the deviation becomes larger leading to stronger non-monotonic ion 

size dependence. This is shown in Fig. 2.1. 

 

Initially, the break down of Walden’s rule was explained in terms of solvent-berg 

model.45,46 This model assumes that the solvent molecules in the first solvation shell 

around the ion are rigidly bound to it and hence the effective radius is much larger 
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than the crystallographic radius of the bare ion. This bigger size automatically reduces 

the mobility of the ion. The effective size of such composite unit increases in size as 

ion becomes smaller. However, this model fails to explain the limiting ionic 

conductivity of ions for which the ion-solvent size ratio approaches to unity.  

 

Later, Born suggested that in addition to the mechanical (bare) friction, the ion 

experiences retardation due to the coupling of its electric field with solvent 

polarization while moving through the solvent.54 This additional friction is termed as 

dielectric friction in Born’s model and therefore the total friction on the ion is a sum 

of bare friction and dielectric friction. Fuoss, Boyd and Zwanzig further developed the 

dielectric friction model,55-57 and Zwanzig, after incorporating the electro-

hydrodynamic effects, obtained an expression where dielectric friction varies 

inversely as the volume of the ion. The prediction of Zwanzig’s theory57 for ions in 

formamide is shown in Fig. 2.1. In all these models, the solvent was treated as a 

structure-less continuum characterized by frequency dependent dielectric function and 

a single Debye relaxation time, τD.   

 

Hubbard and Onsager studied the ion mobility within the framework of continuum 

picture58 and their self-consistent theoretical approach led to the following expression 

for total friction59,60  

                                  ( )∫
∞

ionrtotal rηr
dr=

ς 24π
1 ,                                                               (2.3) 

where r is the distance from the surface of the ion, and η(r) is the distance dependent 

viscosity given as,47 ( ) ( ) ]16/[1 42
00

2
0 rεπηεεqτ+η=rη 0D ∞− . The prediction from H-

O theory, shown in Fig. 2.1, indicates that this theory is also inadequate for predicting 

the experimental limiting ionic conductivities of small ions in formamide.  It was later 

shown empirically that the limiting ionic conductivity could be partially controlled by 

the solvent diffusion that is related to variety of molecular motions as well as coupling 

between them.61 

 

Subsequently, Wolynes and coworkers62-64 developed a theory that took into account 

the ion-solvent interactions, microscopic structure around an ion to describe the ion 
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conductivity. However, this theory also neither include the full dynamics of the liquid 

nor the effects of the self-motion of the ion and therefore enjoyed a limited success.  

 

Recently, a generalized molecular theory has been developed by Bagchi and co-

workers52, 66-69 that incorporates the complex dynamics of polar solvents as well as the 

self motion of the ion. This theory has been found to predict successfully the 

experimental results in water, D2O, acetonitrile and alcohols. We have used this 

theory to calculate the Λ0 in formamide. It is to be noted here that the above theory 

predicts a dynamic cooperativity of solvent translational modes which affects the 

conductivity in a non-linear way.52 

 

Computer simulation studies for ion conductance in neat amide solvents have not 

been performed so far, even-though ion-transport in some other solvent systems have 

been simulated.70-72  The complex nature of the solvent and non-availability of proper 

model-potential might be the reasons for this. However, Rode et al. studied the 

limiting ionic mobility of small, rigid ions such as Na+ cation in aqueous mixture of 

formamide by using the molecular dynamics simulation71 method. These authors 

found in this work that the cation is preferentially solvated by formamide molecules 

which is in agreement with the existing NMR data. 

 

The motivation for studying the ion transport and solvation dynamics in formamide 

comes further from the following facts. First, experimental results for both limiting 

ionic conductivity and solvation dynamics in liquid formamide at room temperature 

are available. Second, it would be interesting to explore the effects of the 

intermolecular vibration (libration) bands in the range of 100-200 cm-1 that have been 

observed repeatedly in the low frequency Raman studies of amide systems.  One 

wonders here whether this low frequency motion could contribute to the initial fast 

solvent reorganization and hence makes the solvation energy relaxation ultrafast. This 

is important as we have observed earlier that inclusion of these bands gives rise to 

better prediction of both limiting ionic conductance and solvation dynamics in polar 

solvents, such as water, D2O and N-Methyl amides52,66-69,73,74  However, we are not 

aware of any experiment that indicates fraction wise contribution of these bands (one 

at ~110 cm-1 and another at ~200 cm-1) to the dielectric dispersion from ∞ε  to square 



 29

of the refractive index in liquid formamide.  Therefore, we have assumed that the 

band at 110 cm-1 is responsible for the missing part as indicated above. We have 

performed calculations both with and without this band to see its effect. Third, the 

total limiting ionic conductance (Λtotal) in formamide shows interesting temperature 

dependence. In the above molecular theory, the temperature dependence enters 

through the generalized rate of solvent polarization relaxation (via the frequency 

dependent dielectric relaxation data), and solute-solvent and solvent-solvent static 

correlation functions. One would therefore like to see whether the above molecular 

theory could explain the observed temperature dependence of Λtotal in formamide. 

 

As already mentioned,75  solvation dynamics is intimately related to the ion transport 

processes and hence study of solvation dynamics is crucially important for 

understanding the microscopic mechanism of ion conductance. For example, consider 

the motion of Li+ in a solvent with τD ~ 40 ps. By using the experimental value of Λ0 

for Li+ in formamide in the following expression, ( )AB NqTkΛ=D 2
0 / , one obtains the 

diffusion coefficient of  Li+ as ~2.4 x 10-6 cm2s-1.  This, after inserting into the 

Einstein relation, produces 0.246Dτ
2/12 ==l D  nm. This is the diffusion 

displacement of lithium ion over a time period of 40 ps. However, the displacement of 

 this ion with mobility U = 9.4 x 10-5 cm2 V-1s-1 in the direction of the applied field 

E=1 Vcm-1 is lE = UEτD = 3.8 x 10-8 nm at typical experimental conditions. 

Interestingly, this value is seven orders less in magnitude than the calculated value of 
1/22l . This means that the motion of the ion between the electrodes is very irregular 

and the limiting ionic conductivity is determined by random collisions of the moving 

ion with the solvent environment and thus both by structure and dynamics.71,72 

      

The organization of the rest of the chapter is as follows. Sec. 2.2 contains the details 

of the molecular theory that has been used here. Method of calculation is discussed 

briefly in section 2.3. Numerical results along with discussion are presented in Sec. 

2.4. The chapter ends with a conclusion in section 2.5.  

 

2.2 The Molecular Theory 
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2.2.1 Limiting Molar Ionic Conductivity  

The microscopic theory used here is based on the following picture.52,66-69 As an ion 

moves in a liquid medium it experiences fluctuating forces from two separate sources.  

First, force comes from the short range interaction with the surrounding solvent 

molecules. This force is primarily repulsive in nature. The friction originating from 

this part is termed bare friction, ςbare
. This friction can be calculated from solvent 

viscosity (η0) and the crystallographic radius of the ion (rion) by using Stokes’ law as 

follows: ionbare rA=ς 0η , where the value of A could be 4π or 6π depending upon 

boundary condition (slip or stick). This is clearly an approximation as hydrodynamics 

may not be true for an ion which is smaller in size than the solvent. However, it has 

been seen that the contribution from this part is small for smaller ions therefore the 

error made in this approximation is not significant.62-64 The second part of the 

fluctuating force originates from the long range ion-dipole interaction. The ion 

experiences retardation due to the coupling of its electric field with solvent 

polarization while moving through the solvent.54 This gives rise to a friction, coined 

by Born, called as dielectric friction (ςdf). Therefore, the total friction on the ion is can 

be expressed as follows:54 

 

                                         dfbaretotal ς+ς=ς                                                         (2.4) 

 

Therefore, the primary idea of this theory comes from Born’s assumption of dielectric 

friction.54 Here we neglect the cross correlation between repulsive short range and 

attractive long range ion-dipole interactions. This is also an approximation first 

proposed by Wolynes and has been extensively used in subsequent works.62-65 

However, the validity of this approximation is also questioned when the long range 

interactions are large enough and the frictional contribution due to cross correlation 

becomes of the order of magnitude.76 The dielectric friction is calculated from force 

auto correlation function (FACF) using Kirkwood formula which is given by77 

 

            >t<td
Tk

=ς df )((0).
3

1
idid

B

FF ΔΔ∫                                                 (2.5) 
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where ΔFid(t) is the time dependent fluctuating force acting on the ion due to ion-

dipole interaction and kBT is the Boltzmann’s constant times  temperature. <…> 

denotes the ensemble average. The density functional theory (DFT) provides an 

expression for the effective fluctuating potential, and therefore the force, on the ion in 

terms of space and orientation dependent density. The expression for the fluctuating 

force density on the ion due to ion-dipole interaction is given by52,53 

 

             ),(),;(),(n),( ionB t,ρcddtTk=t did Ω'r'Ω'r'r'Ωr'rrFid δ∫∇Δ                      (2.6)     

                                                                                                                                                                         

where nion(r, t) is the number density of  ion, πρρδρ 4/),(),( 0
ddd −= ΩrΩr  is the space 

(r), orientation (Ω) and time (t) dependent fluctuation in the average number density 
0
dρ  of the pure solvent, and ),;( Ω'r'ridc  is the space and orientation dependent ion-

dipole direct correlation function (DCF).  DCF describes the effective interaction 

between the ion and the dipolar solvent molecules. Now the space and orientation 

dependent number density and DCF are expanded in spherical harmonics. We then 

use the standard Gaussian decoupling approximation to obtain the microscopic 

expression for the frequency dependent dielectric friction as52,66-69 

 

           | |∫∫
∞∞

−

0

10210

0
2

0

)()()(
)3(2

2k
)( tk,Skctk,Sdkkdte

Tρ
=zς solventidion

4ztdB
df π

                           (2.7) 

 

where )(10 kcid is the Fourier transform of the longitudinal component of static ion-

dipole DCF and ),(10 tkSsolvent  the longitudinal component of the orientational dynamic 

structure factor of the pure solvent.  In the definition of above correlation function k 

is taken parallel to the z axis. Sion(k,t) denotes the self-dynamic structure factor of the 

ion. The interesting feature of the above equation is that it couples single particle 

motion to the collective dynamics of the solvent via ion-dipole direct correlation 

function. In the above equation the self-dynamic structure factor of the ion is assumed 

to be given by52  
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where the diffusion coefficient of the ion, ion
TD , itself depends on the total friction. 

 

The orientational dynamic structure factor of the pure solvent is calculated by using 

the following expression52  
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                                     (2.9)  

                                                                                                         

where L-1 stands for Laplace inversion. 3Y is the polarity parameter of the solvent 

which is related to the dipole-moment, μ, and density, 0
dρ , of the solvent by the 

relation, 02)3/4(3 dBTkY ρμπ= . εL(k) is the longitudinal component of wave number 

dependent dielectric function. ),(
10∑ zk  is the longitudinal (l=1, m=0) component of 

the generalized rate of orientational polarization density relaxation of the solvent. The 

calculation of ),(
10∑ zk  is rather complex. It is determined by the static orientational 

structure, frequency dependent dielectric function ε(z), translational diffusion 

coefficient of the solvent molecule.  The expression for the generalized rate of 

orientational polarization density relaxation,  ),(∑lm
zk , and other details are given in 

section 2.3.1 and also in Appendix I.   

 

In the z=0 limit, Eq. (2.7) provides the following expression for macroscopic 

dielectric friction (i.e. ςdf(z=0) ≡ ςdf ) 52, 66-69   
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Since the diffusion coefficient of the ion, ion
TD  itself depends on the total friction, the 

above equation for ςdf  must be solved self-consistently.  Once ςdf is calculated self-

consistently the limiting molar ionic conductivity in infinite dilution is obtained by 
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using the relation
totalRT

qF
ς

=Λ0 , where R is the Avogadro number times the 

Boltzmann constant.  

 

2.2.2 Dipolar Solvation Dynamics  

Let us consider a mixture of dipolar solute and solvent.  As the solute is dissolved in 

the solvent the equilibrium structure of the pure solvent is disturbed and causes 

density inhomogeneity in the solute-solvent composite system. In this state one can 

write excess part of free energy functional for the whole solute-solvent system. Then 

the expression for the excess solvation energy of the solute, which is essentially the 

excess effective potential energy of solute due to its fluctuating interaction with the 

surrounding solvent molecules, is obtained by taking functional differentiation the 

free energy functional and equating it equal to zero for the equilibrium condition (see 

Appendix II). 

 

The probe molecules (solute) that are frequently used in solvation dynamics 

experiments are often massive and contain several aromatic rings and therefore 

several times bigger than a solvent molecule. This means that the probe solute 

remains practically immobile during the course of solvation and therefore the 

solvation becomes that of an immobile solute.  Therefore, we use the expression for 

the position (r ), orientation (Ω ) and time (t) dependent total fluctuating solvation 

energy for a fixed solute which is written as52,78 

  

                ∫ ′′′′′′−=Δ ),,(),;,(),,( tcddTktE dsdBsol ΩrΩrΩrΩrΩr δρ                            (2.11) 

 

where ),;,( ΩrΩr ′′sdc  is the position and orientation dependent solute-solvent direct 

correlation functions.  Then a tedious but straight forward algebra (given in Appendix 

II) leads to the following expression for the normalized solvation energy auto 

correlation function for a fixed solute75,78 
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                                                                                                                                (2.12) 

 

where )(10 kcsd  and )(11 kcsd  are the longitudinal and transverse components of the wave 

number dependent dipole-dipole direct correlation function, respectively and have 

been calculated using MSA. εL(k) and εT(k) are longitudinal and transverse 

components of wave number dependent dielectric constant, respectively. ),(∑lm
zk  

denotes the (l, m)th component of the  wave number and frequency dependent 

generalized rate of solvent orientational polarization density relaxation.   

 

We have used above equation to calculate the decay of the normalized solvation 

energy auto-correlation function, S(t), of a dipolar probe coumarin 153 (C153) in 

formamide at 283.15 K, 298.15 K and 328.15 K. 

 

2.3 Calculation Procedure  

2.3.1 Calculation of Generalized Rate of Solvent Polarization 

Relaxation, ),(∑lm
zk  

The calculation of the generalized rate of solvent orientational polarization density 

relaxation, ),(∑lm
zk , is non-trivial task and somewhat involved. The detailed 

derivation of this quantity has already been presented elsewhere52,73 and also provided 

in Appendix I. The expression for the generalized rate of orientational polarization 

density relaxation is given by52,73  
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where σ , M and I  are the  diameter, mass and average moment of inertia of the 

solvent molecule, respectively. ),( zkTΓ  and ),( zkRΓ  are the wavenumber and 

frequency dependent translational and rotational memory kernels, respectively. 

),()1)(4/(1),( 0 kllmckllmf m
d −−= πρ , describes the (1, 1, 0), (1, 1, 1) and (1, 1, -1) 

components of the orientational static structure of the dipolar solvent. 

  

Of these two frictional memory kernels, the calculation of ),( zkTΓ is somewhat easier 

and has been obtained from the isotropic liquid dynamic structure factor, ),( zkS , 

using the relation,52 
),(

)],()()[(
)],([ 22 zkSk

zkzSkSkS
zkzM

Tk

T

B −
=

Γ+σ
 with 

)(
)(),( 2 kSkDz

kSzkS Solvent
T+

= . In the present calculation the translational diffusion 

coefficient ( Solvent
TD ) of a solvent molecule has been obtained from the liquid viscosity 

using the slip hydrodynamic boundary condition. The solvent static structure 

factor, )(kS , is calculated by using Percus-Yevick (PY) hard sphere direct correlation 

function, )(kcPY as: 10 )](1[)( −−= kckS PYdρ .  The other details regarding the 

calculation of ΓT(k,z) have been described in Refs.52 and 67 and also in Appendix I.    

 

The rotational memory kernel ),( zkRΓ  has been obtained by using the scheme 

developed earlier for underdamped liquids.52,73 In this scheme the k-dependence of 

),( zkRΓ  have been neglected and therefore the kernel ),( zkRΓ  is replaced 

by ),0( zkR =Γ . The function ),0( zkR =Γ  is then directly connected to the frequency 

dependent dielectric function )(zε as follows 
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where 0ε  the static dielectric constant of the medium and ∞ε  is )(zε  in high 

frequency limit. Similarly, ),(
11∑ zk  can be obtained from the experimental dielectric 

relaxation data but only after replacing )0,110( =kf by )0,111( =kf . 
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Table 2.1:  Dielectric relaxation parameters for formamide at different temperatures 

Temperature 
(K) 

ε0 τ1 
(ps) 

β1 
(DC)(a) 

ε1
(b)

 
 

nD
(c)

 
 

nD
2

 

288.15 113.42 55.6 0.91 5.62 1.447 2.094 

298.15 109.56 40.3 0.94 5.71 1.447 2.094 
328.15 98.75 22.1 0.94 4.80 1.447 2.094 

    
(a) Davidson-Cole (DC) relaxation. (b) The dispersion (ε1 - nD

2) is assumed to carry out by the 

librational band at 110 cm-1 for all the three temperatures studied here. (c) nD represents the 

refractive index. 

   

 

The experimental data for the frequency dependent dielectric function of formamide 

at three different temperatures are described by the following rather general 

expression79 
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where z is Laplace frequency, ε0 is the static dielectric constant, ε1= ε∞ is its limiting 

value at high frequency, τ1 is the relaxation time constant with shape parameters 

0≤α1 <1 and 0<β1≤1.  

 

For our calculation in formamide, we have used dielectric relaxation data measured 

by J. Berthel and coworkers80 who recorded the frequency dependent dielectric 

function in the range of 0.2 – 89 GHz. The details of the dielectric relaxation data are 

summarized in Table 2.1. The interesting aspect of these data is that they are best 

fitted to a single Davidson-Cole (DC, α1  =0, β1 < 1) equation at all the three 

temperatures studied here. It should also be noted that at these temperatures the value 

of the measured ε∞  is approximately 5. Therefore, the dispersion, (ε∞ - nD
2) = (5 – 

2.1) ≈3, (nD being the refractive index) is missing in these data due to the limited 

resolution available to these authors. However, it has seen earlier74 that such missing 

component can make the solvation energy relaxation faster and hence contribute in an 

important manner to both the ultrafast polar solvation response and ionic conductivity 
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in formamide. The experimental study of Chang and Castner3 by using optical-

heterodyne detected optical Kerr effect (OKE) spectroscopy has revealed that 

formamide contains librational modes  with    frequencies centered at ~110 and ~200  

cm-1. These findings have also been corroborated by other authors.8,9 The works of 

Cho et al.81 and McMorrow and Lotshaw82 have shown the connection between 

dynamics measured by OKE and TDFSS (time dependent fluorescence Stokes’ shift) 

measurements. We therefore assume that the librational mode detected at ~110 cm-1 

takes part in both the polar solvation energy relaxation and limiting ionic conductivity 

in formamide at all the temperatures studied here. In addition, we have assumed that 

this librational mode is an overdamped one.52-53,75  

 

2.3.2 Calculation of Static Correlation Functions 

2.3.2.1 Solvent Dipole-dipole Direct Correlation Functions, c(110, k) and c(111, k) 

The solvent orientational static correlation function, c(110, k), is calculated by using 

the mean spherical approximation (MSA) model for a pure solvent.83 Then proper 

corrections at both k→0 and k→∞ limits are used to obtain the wavenumber 

dependent dielectric function εL(k). Subsequently, the longitudinal component of the 

wave number dependent dielectric function, εL(k) obtained by the following exact 

relation52-53  
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For intermediate wavenumbers (kσ→2π), we have used the above equation while for 

k→∞ we have used a Gaussian function which begins at the second peak height of [1-

1/εL(k) ] to describe the behaviour at large k. As described earlier,52,53,65  this 

procedure removes the wrong wavenumber behaviour of static correlations described 

by the MSA. 

 

We have obtained the transverse component of the solvent dipole-dipole direct 

correlation function, c(111,k), directly from the MSA. Then the transverse component 
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of wave number dependent dielectric function εT(k) is obtained by using the  

following relation52,53 

 

                             [ ]
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The corrections at wave number k→0 in the correlation functions were done to ensure 

that εL(k=0) = εT(k=0) are equal to experimental dielectric constant of formamide 

which is around ~113.                             

 

2.3.2.2 Ion-dipole Direct Correlation Function, )(10
id kc   

The ion-dipole direct correlation function, )(10
id kc , is calculated using the procedure of 

Chan et al.84 for electrolyte solution in the limit of zero ion concentration. We first 

calculate the solvent microscopic polarization, Pmic(r), around an ion using following 

relation84 
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where 0ε  is static dielectric constant of pure solvent, e the electronic charge and z the 

valency of the ion. The microscopic correction of polarization through the 

dimensionless quantity F(r) is important feature of this equation. The behaviour of the 

microscopic solvent polarization, Pmic(r), around different ions has been shown in Fig. 

2.2. It evident from Fig. 2.2 that polarization density around an ion is oscillatory in 

nature and maximum at ion-solvent contact.  Note the difference in Pmic(r) value for 

ions with different size. Polarization density at the contact as wells other solvation 

shells is maximum for smaller ion such as Li+ and is minimum for larger ion like 

tetra-butyl ammonium ion, C4
. Once the Pmic(r) value is calculated we then use Eqs. 

3.67, 3.57 and 3.15b of Ref. 84 to obtain )(10
id kc .  
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Figure 2.2: The microscopic polarization, Pmic(r), (scaled by 3
solventBTk σ ) of solvent 

around an ion as a function distance r (scaled by solvent diameter σsolvent) from the centre of 

the ion. Note the difference in polarization for different ion-solvent (formamide) size ratios.  

A small negative value of Pmic(r) is also seen which may mean that formamide molecules just 

outside the first salvation shell are oriented in a   direction opposite to those inside the shell. 

 

 

Table 2.2: Solvent parameters needed for the theoretical calculation at different 

temperatures. 

 
Temperature 

(K) 
Diameter 

(Å) 
µ 

(D) 
Density 
(g/cm3) 

Viscosity 
(cP) 

283.15 4.36 3.72(a) 1.1508 5.00 
298.15 4.36    3.72 1.1296 3.31 
328.15 4.36    3.72(a) 1.1296 

(298.15K)(b) 
1.833 

(325.15K)(b) 
 
(a) The values of µ at temperatures 283.15 and 328.15 K are not available and hence the value 

of µ at 298.15 K is used for calculations at the other two temperatures. (b)The values in the 

parenthesis in the ‘Density’ and ‘Viscosity’ columns indicate the temperatures at which these 

properties were measured. 
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Here we would like to mention that since MSA is a linear theory, any modification in 

the solvent structure around an ion through nonlinear interactions in a solvent of high 

dielectric constant and dipole moment will be completely missed.84 Therefore, the 

calculated polarization structure around an ion in formamide, as shown in Fig. 2.2, 

may not be quantitatively correct. However, the calculation of ion-dipole direct 

correlation functions by using MSA may still be justified because the predictions are 

semi-quantitative in nature with correct trends. Furthermore, there is no other simple 

theory which is analytically tractable as MSA to describe ion-dipole system better 

than this. 

 

2.3.2.3 Solute Dipole- Solvent Dipole Direct Correlation Function, )(10 kcsd   

The value of )(10 kcsd  is calculated by using the MSA model for a binary mixture of 

dipolar liquids. This model was solved by Isbister and Bearman.85 Here we have 

assumed that the formamide is host solvent in which the dipolar probe solute (C153) 

is present in the limit of zero concentration. The parameters necessary for obtaining 

these static correlations have been given in Table 2.2. 

 

2.4 Results & Discussion 

2.4.1 Limiting Molar Ionic Conductivity and Temperature 

Dependence 

Here we present the results of the calculated limiting molar ionic conductivities in 

formamide at three temperatures, namely, at 283.15, 298.15 and 328.15 K. A 

comparison between theory and experiments86 shall be shown wherever possible. In 

Fig. 2.3 we show the calculated value of the Walden product, Λ0η0, plotted against the 

inverse of the crystallographic radius of the ion, rion
-1, in formamide at room 

temperature. The solid line represents the predictions from the present theory. For 

comparison, available experimental data (solid circles) are shown in the same figure.  
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Figure 2.3: The limiting values of Walden product (Λ0η0) for the alkali, and tetra-alkyl 

ammonium ion as a function of inverse of crystallographic radius (rion
-1) in formamide at 

room temperature. The solid line represents the prediction of the present microscopic theory, 

the solid circles denote the experimental results, and the short dashed line represents Zwanzig 

theory.  

  

 

It is clear that the theory agrees well with the experiments. However, the predicted 

peak position of the Walden product with respect to rion
-1 is slightly shifted towards 

the smaller ions. Fig. 2.3 also shows the calculated values of the Walden product for 

uni-positive ions in formamide predicted by the continuum theory of Zwanzig. It is 

interesting to note that the theory of Zwanzig57 fails completely for small ions like 

Na+ and Li+. This is probably due to the neglect of the microscopic structure of the 

liquid around the moving ion and also not accounting for the fast components of the 

liquid dynamics that are often exhibited in the recent frequency dependent dielectric 

relaxation measurements.80 
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Figure 2.4: The effect of libration band (110 cm-1) on the limiting ionic conductivity in 

formamide at room temperature. The values of Walden product, Λ0η0
,
 are plotted as a function 

of the inverse of crystallographic radius of the ions. The solid line represents the prediction of 

the present theory with the contribution of the libration band at 110 cm-1 to the dielectric 

relaxation data of formamide is considered. Experimental Walden products for different ions 

are denoted by solid circles. The short dashed line represents the prediction of the present 

theory without the contribution from the libration band.  

 
 
The effects of the intermolecular vibration (libration) band with a frequency centered 

at 110 cm-1 on the limiting ionic conductivity are shown in Fig. 2.4. The solid and 

dashed lines represent the calculations with and without this band, respectively. As 

evident from this figure, the agreement between the theory and experiments86 

becomes poor if the contribution of this band to the complete dielectric relaxation of 

formamide is neglected. This has been observed earlier for water and deuterated 

water (D2O) also.52,66-69,73 As we will see in the next section, this band also contributes 

significantly to the time dependent progress of solvation of a dipolar probe in 

formamide. 
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Figure 2.5: Upper panel: Temperature dependent limiting ionic conductance, Λ0, for uni-

positive ions as a function of the inverse of the crystallographic ionic radius (rion
-1). The short 

dashed line, solid line, and long dashed line represent the predictions of the present molecular 

theory at 283.15, 298.15, and 328.15 K, respectively. Lower panel: The temperature 

dependence of the Walden Product for same ions at these three temperatures. The 

representations remain the same as in the upper panel.  

 

The limiting ionic conductivity, Λ0, calculated for three different temperatures 283.15, 

298.15 and 328.15 K in formamide are shown in the upper panel of Fig. 2.5. The 

temperature dependent solvent parameters needed for the above calculation are 

summarized in Table 2.2. Note in the above figure that the calculation predicts a 

strong temperature dependence of limiting ionic conductivity in formamide. Since the 

present theory uses the experimentally measured frequency dependent dielectric 

relaxation data as an input, such strong temperature dependence originates primarily 

from the dielectric relaxation parameters obtained at different temperatures. This 

means that the zero frequency dielectric friction, ςdf(z=0), is responsible for the 

observed temperature dependence. We would like to mention here that the calculated  
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Table 2.3: 00η
TΛ , the total ionic conductivity at infinite dilution ( −+ Λ+Λ=Λ 000

T )   

multiplied with the solvent viscosity ( 0η ), for 1:1 electrolytes in   formamide: 

temperature dependence 

Salts 
 

Experiment 
00η

TΛ  (298.15K)/ 

00η
TΛ  (283.15K) 

Present theory(a) 
00η

TΛ (298.15K)/ 

00η
TΛ (283.15K) 

Present theory(b) 
00η

TΛ (298.15K)/ 

00η
TΛ (328.15K) 

   NaCl 1.04 1.02 0.96 

   KCl 0.98 1.01 0.97 

   KBr 0.98 1.01 0.97 

   Me4NI 0.98 1.01 0.99 

   Et4NI 0.98 1.01 0.99 

   Pr4NBr 0.99 1.01 0.99 

   Pr4NI 0.99 1.01 0.99 

   Bu4NBr 1.01 1.01 0.99 

   Bu4NI 1.02 1.01 0.99 

   i-Am3BuNI 0.99 1.00 0.99 

(a) Values for solvent viscosity ( 0η ) at these temperatures are given in the last column of 

Table 2.2. 

(b) Theoretical predictions presented in this column could not be compared with experiments 

due to nonavailabiltiy of experimental data at 328.15 K. 

 

values of Λ0 could not be compared with the experiments at 283.15 K and 328.15 K 

because of the non-availability of experimental data at these temperatures. We could, 

however, compare the total limiting ionic conductivities ( −+ Λ+Λ=Λ 000
T ) of several 

1:1 strong electrolytes in this liquid at 298.15 K. Such a comparison is shown in Table 

2.3 where the ratio between the values of  00η
TΛ  obtained at 298.15 and 283.15 K is 

presented for both experiment and theory. It is evident from the table that the theory 

agrees well with experiments at 283.15K. The ratios of 00η
TΛ  have also been 

calculated for temperatures at 298.15 and 328.15 K for same set of electrolytes.  

 

Since viscosity also depends upon temperature, it would be interesting to see how the 

Walden product for these uni-positive ions varies with temperature in formamide. The 

lower panel of Fig. 2.5 shows the variation of the Walden product with   temperature  
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Figure 2.6: The time dependent dielectric friction, ςDF(t),  experienced by Li+, Cs+, and C4 

ions as a function  of  time t at 283.15 K (solid lines), 298.15 K (long dashed lines) and 

328.15 K (short dashed lines). 

 

 

for these ions. Note here that the temperature dependence in viscosity offsets the 

strong temperature dependence exhibited by the limiting ionic conductivity shown in 

the upper panel and hence the Walden product becomes almost insensitive to the 

change in temperature. 

 

We now come back to the discussion on the temperature dependence of dielectric 

friction. The time dependent dielectric friction experienced by Li+, Cs+, and C4 ions 

while diffusing through formamide at 283.15 K, 298.15 K and 328.15 K are shown in 

Fig. 2.6. For clarity, the dependence for the largest ion C4 is also shown in the inset. 

As expected, the value for the time dependent dielectric friction at the zero time for 

the smallest ion Li+ is largest while that for the largest ion C4 is smallest. Also, note 

that the rate of the decay of time dependent dielectric friction becomes slower as one 

decreases the temperature.  
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Figure 2.7: The normalized solvation energy time auto-correlation function, S(t), for  a 

dipolar solute probe (Coumarin 153) dissolved in formamide at 298.15 K is shown as a 

function of time. The calculated results are denoted by the lines (solid, short dashed and long 

dashed) while the experiments are by the filled circle. The theoretical prediction represented 

by the long dashed line is calculated by using the experimental dielectric relaxation data 

supplied in Ref. 80. The short dashed line is obtained by adding the contribution of the 

libration band at 110 cm-1 band to this dielectric Relaxation data.  The solid line is obtained 

by considering the contribution of the libration band and also freezing the translation motion 

of solvent molecules. Note that the agreement with experiments (solid circles) becomes better 

upon freezing the solvent translational motion.  

 

2.4.2 Solvation Dynamics and Temperature Dependence  

We now present the numerical results of solvation dynamics of an excited dipolar 

probe, C153 in formamide at three different temperatures and also compare with the 

experimental data provided by Horng et al.50. We will also present results here to 
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show the effects of the intermolecular vibration band at 110 cm-1 on the time 

dependent progress of solvation of an instantaneously excited dipolar probe in 

formamide.  The effect of this band on ionic conductivity is already shown in the 

previous section. 
 

In Fig. 2.7 we compare the decay of the normalized solvation energy auto-correlation 

function, S(t) obtained by using Eq. (2.12) at 298.15 K with those from the 

experiments by Horng et al.50. It is evident from the figure that the predicted decay of 

the normalized solvation energy correlation function (solid line) agrees rather well 

with the experiments (solid circles). Note here that the numerical results represented 

by the solid and the short dashed lines are obtained by properly incorporating the 

contributions from the 110 cm-1 band to the complete dielectric relaxation of 

formamide at 298.15 K. In addition, the solvent molecules are assumed to be 

translationally immobile for the calculated decay represented by the solid line. The 

long dashed line represents the calculated decay without the 110 cm-1 band. It is 

interesting to note that the experimentally observed short time dynamics is completely 

missed if the contribution from this band is neglected in the present theory. We would 

also like to mention here that when the solvent molecules are translationally mobile, 

the decay at long time (>1 ps) predicted by the present theory is faster than what has 

been observed in experiments.  This may be explained as follows. Formamide in the 

liquid phase can exist as cyclic dimers and linear chain oligomers3-35 and therefore 

these large units would be much less mobile (translation) than a single formamide 

molecule. Consequently, the solvent reorganization around the excited solute (C153) 

via translational diffusion becomes sluggish and hence the decay rate becomes slower 

at long time. However, this does not affect the relaxation at short times (<1 ps) 

because  the  initial  part of the polar  solvation  energy  relaxation  is  dictated by  the   

intermolecular vibration band (in formamide it is peaked at 110 cm-1) which is 

collective in nature.  

 

In Fig. 2.8 we present the calculated decay of the solvation energy auto-correlation 

function S(t) at 283.15 K (solid line), 298.15 K (long dashed line) and 328.15 K 

(short dashed line). We have assumed here that the librational mode remains peaked  
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Figure 2.8: The effect of temperature on polar solvation energy relaxation in formamide. 

The normalized solvation energy auto-correlation function, S(t),  calculated for coumarin 153 

in formamide at 283.15 K (short dashed line), 298.15 K (long dashed line) and 328.15 K 

(solid line) are shown as a function of time (t).  Note here that in these calculations, the 

contributions of the libration band as well as those from the solvent translational mode have 

been incorporated. In addition, no temperature dependence of the libration band is considered. 

 

at 110 cm-1 at all the temperatures studied here. As a consequence of this 

approximation, at short time the calculated rate of the decay of the normalized 

solvation energy auto-correlation function becomes the same for these three 

temperatures. The long time decay, however, becomes slower as the temperature 

decreases. In all the calculations presented in Fig. 2.8, the solvent molecules are 

assumed to be translationally mobile.  

 

2.5 Conclusion 

Let us summarize the main results presented in this chapter. We have calculated 

limiting molar ionic conductivity of uni-positive ions in formamide at three different 

temperatures by using a microscopic theory. The results predicted by the theory are 
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found to be in good agreement with the relevant experimental data. The non-

monotonic size-dependence of Walden product in formamide has been explained 

satisfactorily by the present theory as was done earlier for water, deuterated water, 

acetonitrile and monohydroxy alcohols.52,66-69 We have also calculated the total 

limiting ionic conductance of several 1:1 strong electrolytes in formamide at three 

different temperatures and compared with the available experimental data. We have 

also studied solvation dynamics of a dipolar solute probe (C153) in formamide in 

order to investigate the effects of dynamical solvent modes on the ionic mobility in 

this liquid. A satisfactory agreement between the predicted and experimentally 

observed decay rates of normalized solvation energy auto-correlation function, S(t), 

has been found at 298.15 K. Such a comparison for two other temperatures could not 

be made due to non-availability of experimental results at these temperatures.  

The role of the libration mode centred at 110 cm-1 in determining the time scale of the 

fast component of the polar solvation energy relaxation in formamide and its 

subsequent effects on ion mobility have also been investigated here.  We have found 

that the fast component of the solvation energy relaxation is totally missed if one 

switches off the contributions coming from the libration mode. This switching off also 

over-estimates the friction on a moving ion and hence lowers the value of its 

conductivity at infinite dilution in formamide. We would, however, like to mention 

here that the coupling of this band to both the solvation dynamics and ionic 

conductivity through dielectric relaxation is purely an assumption. This assumption 

together with the results obtained here might be regarded as a feedback to dielectric 

relaxation studies of liquid formamide. This is because the results of this study 

indicate that there might be another relaxation step with a time constant present in 

subpicosecond regime. Further experiments with more sophisticated technique, such 

as terahertz pulse transmission spectroscopy,87 may be employed to reveal such a fast 

time scale in the dielectric relaxation of formamide at temperatures studied here. 

 

The success of the theory might be lying in the use of the experimentally measured 

dielectric relaxation data as an input in solvent dynamic structure factor which takes 

care, at least partially, of the complex interactions that are present in the solvent. And, 

the present theory accounts for the microscopic structure of the solvent and includes 

the microscopic polarization around a solute ion in a consistent manner.  
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However, we would like to mention here that in our calculation of dielectric friction, 

we have neglected the cross-correlation between forces arising out of short-range 

(hard) and long–range (soft) interactions. This might be erroneous since recent 

simulation studies by Kumar and Maroncelli76 have revealed the non-separability of 

frictions arising out of these interactions. This could be a potential source of fatal 

error and calculations using such scheme may not reflect the correct picture. Their 

simulation results also demonstrate that whenever the long-range interactions are 

large enough to significantly affect the friction, the frictional contribution due to the 

cross-correlation between the short-range and long-range forces is of the same 

magnitude as the friction coming solely from the long-ranged interactions. One 

therefore needs to develop a theory that will account for the cross-correlations in 

some consistent manner and yet will remain analytically simple such as the present 

one. This is definitely a challenging task. 
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Chapter 3 

 

Limiting Ionic Conductivity in Water- 
Tertiary Butyl Alcohol (TBA) Mixtures: Alcohol 

Mole Fraction Dependence 

 

3.1 Introduction 

Experimental studies of ionic conductivity in aqueous tertiary butyl alcohol (TBA) 

solutions have revealed that at room temperature in the limit of low TBA mole 

fraction, the Walden product (WP), Λ0η0, of uni-positive rigid ions shows a non-

monotonic TBA mole fraction dependence.1 The Λ0η0 versus TBA mole fraction 

(XTBA) curve shows a peak at XTBA=0.10 where several anomalous properties of the 

water-TBA mixture have been reported.1-17 The peak values of the Λ0η0 versus XTBA 

curve has been attributed to the structure-breaking power of the ions in the aqueous 

alcohol mixtures.  However, the limiting ionic conductivity of relatively large tetra-

alkyl ammonium ions show linear composition dependence and has been explained in 

terms of hydrophobic hydration.1 These experimental findings are summarized in Fig. 

3.1. 

 

Neutron diffraction,2-4 X-ray scattering,6 light scattering7 experiments and computer 

simulation8-17 studies of water-TBA mixture have suggested that the self association 

of TBA molecules due to hydrophobic interaction between alkyl groups of TBA is 

responsible for the observed anomalies in various thermodynamic properties in water-

rich compositions. Salt solutions can be used both to stabilize and destabilize 

hydrophobic surfaces causing low-polar molecules to become more (salting-in) or less 

(salting-out) soluble.18-20 Therefore, the presence of ions in aqueous alcohol mixture 

can significantly modify the structure of the mixture and can alter many of the  
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Figure 3.1: Experimental Walden products for cations in water-TBA mixture relative to its 

value for pure water. The data has been taken from Broadwater and Kay (J. Phys. Chem. 74, 

3802 (1970)).  

 

 

solution properties. Also, the local enrichment of one solvent component around the 

ion, so-called preferential salvation,21-22 can have profound effects on its 

conductivity. For, if the ion is solvated more by water then the motion of the ion 

would be different than if it is solvated preferentially by TBA molecules. The extent 

of the effect of the preferential solvation may change with the composition of the 

mixture.21  

 

As we have noticed in the last chapter, theoretical studies on ionic conductivity in 

pure polar solvents have been able to explain the break-down of the Stokes’ law for 

small uni-positive ions in terms of ion-solvent interaction, microscopic structure of 

the unperturbed solvent and its natural dynamics.23-40 However, similar theoretical 

studies for binary mixtures are very few even-though there exists a large amount of 

experimental data.41-50 Ibuki and Nakahara tested the Hubbard-Onsager (HO) theory 

for ionic conductivity in ethanol-water51 and dioxane-water52 mixtures. These authors 

have found that HO theory does reasonably well in predicting the friction coefficients 
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for alkali metal ions as function of solvent composition. The phenomenological 

approach of Apelblat to calculate the limiting molar ionic conductances for 

appreciable number of aqueous and non-aqueous mixtures seems to be working 

well.53 Even though the above approach is able to predict the experimental data, it 

does not provide any molecular level explanations in terms of ion-solvent and solvent-

solvent interactions and also the dynamics of solution mixtures. Wang and Anderko 

developed a model to calculate self-diffusivity of the ions, and therefore conductivity, 

in the mixed solvent electrolyte solutions.54 However, the model proposed by them 

involves adjustable parameters to match the experimental limiting molar ionic 

conductivity in mixed solvents and therefore lacks a systematic microscopic 

description of ion conductivity in mixed solvents. 

    

In this chapter we have calculated limiting molar ionic conductivity of alkali metal 

ions, Li+, Na+, K+, and organic ions, tetra-methyl-ammonium, C1 and tetra-butyl-

ammonium, C4, in water-TBA mixtures in the water-rich region of the mixture 

composition. The predicted results are then compared with the available experimental 

data.1 Each composition studied here is assumed to be an effective single-component 

dipolar solvent defined by experimental density with dipole-moment μ  given 

by ( ) 222 1 TBATBAWTBA XX μμμ +−=  where TBAX  denotes the mole-fraction of TBA, 

Wμ  and TBAμ  the dipole-moments of pure water and TBA, respectively.55 The static 

structure of the mixture has been obtained from molecular dynamics simulation (see 

chapter 7).17 This is done in order to incorporate the structural complexity of such 

binary mixtures in a way much better than simply using the MSA for ion in dipolar 

mixtures.21 The effects of solution heterogeneity also enters into the calculation as 

experimental dielectric relaxation data are used as inputs to the theory for predicting 

the limiting ionic conductivity at a given TBA mole-fraction. 

 

 The organization of the rest of the chapter is as follows: In section 3.2 we give an 

overview of the theoretical details. Calculation procedure is discussed briefly in 

section 3.3. Numerical results with discussion are presented in section 3.4. Finally the 

chapter ends with conclusion in section 3.5. 
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3.2 Theory 

In binary dipolar mixtures, the bare friction, ςbare , may still be approximated by the 

Stokes’ law, ionbare rA 0ης = ,  0η being the solution viscosity. The coefficient A has 

been taken to be π4 (slip boundary condition) for all the ions considered here. The 

mode-coupling expression for dielectric friction, dfς , in binary dipolar mixtures can 

be derived  as done before for pure dipolar solvents.  We write the excess free energy 

functional for the total system (ion + binary mixture) as39,55  
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where      0)()( ionionion nnn −= rrδ  and     πρρδρ 4/),(),( 0
aaa −= ΩrΩr ,     are the 

fluctuations of solute dipole and solvent  dipole of ath type  densities about their bulk 

values, respectively. Minimizing the above free energy functional for equilibrium 

condition we get the following expression for the effective force density acting on the 

ion due to ion-dipole interactions as39,55    
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Now, as done in chapter 2 by using the Kirkwood formula56 of force autocorrelation 

function and the standard Gaussian decoupling approximation57 we obtain the 

following expression for the macroscopic dielectric friction55 
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where 0
aρ  is number density of ath type dipolar component of the mixture. ),( tkSion  

denotes the self-dynamic structure factor of the ion. )(10 kcia is the Fourier transform of 

the longitudinal component of static ion-dipole direct correlation function (DCF) due 

interaction between the ion and ath type dipole.  ),(10 tkSab  is partial solvent dynamic 

structure factor. The solution static structure factor may be assumed to be given by the 

mean spherical approximation (MSA) or the hypernetted chain (HNC) theories. 

However, the calculation of the partial dynamic structure factor, ),(10 tkSab , is rather 

daunting task if one wants to consider the microscopic dynamics of the system. It will  

be evident later in this chapter that static correlation functions obtained from MSA for 

electrolyte solution in binary dipolar mixtures21,58 is not sufficient to predict the 

correct structure of water-TBA mixture. Therefore, as discussed above, we have 

approximated water-TBA mixture as an effective dipolar one-component medium. 

This leads to the above expression for dielectric friction (Eq. 3.3) to reduce to that for 

a single component system as described in chapter 2.    

  

3.3 Calculation Procedure 

3.3.1 Calculation of Static Correlation Functions  

The ion-dipole DCF, )(10
id kc , is calculated using the procedure of Chan et al.59 for 

electrolyte solution in the limit of zero ion concentration (see section 2.3.2.2 for more 

details). The longitudinal component of wave number dependent dielectric function 

)(kLε  has been obtained from our own molecular dynamics simulation studies17 done 

using all atom models for water and TBA (see chapter 7). The function )(kLε  is 

related with dipolar symmetry projections, )(11 rh l ,  as60  
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where )(~11 kh l  is the Fourier-Hankel transform of the projection )(11 rh l  as 
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Figure 3.2: Upper panel: Simulated Longitudinal component wavenumber dependent 

dielectric function, )(kLε , as a function of wavenumber, σk , at different composition of 

water-TBA mixture. The present MD result for pure water is compared with that from 

extended reference interaction site model (XRISM) in the inset of the figure. Note that 

8.2=σ Å in the present calculation while it is 3.15Å in XRISM.  Lower panel: Essential 

features of ])(1[ 1−− kLε : Open circles and open squares are peak-height and full width at 

half maximum (FWHM) of the function, respectively.  
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and lj  is the spherical Bessel function of order l.  )(11 rh l  is  calculated from the 

weighted sum of dipolar symmetry projections of pair distribution for each species 

pairs (water-water, water-TBA, TBA-TBA) of the mixture as:60 

)()( 11

,
2

11 rh
xx

rh l
ij

ji

jijil ∑=
μ

μμ
, where  ix  and iμ  are molefraction and the dipole-

moment of species i , respectively and )(11 rh l
ij  is dipolar symmetry coefficients  for a 

pair of molecules of species  i  and j . Other details about the function )(11 rh l  can be 

found in chapter 7. Note here that only first peak of the simulated )](11[ kLε− with 

proper corrections at both k→0 and k→∞ limits has been used for the calculation of 

limiting ionic conductivity.39 The simulated )](11[ kLε−  versus wavenumber k curve 

at various molfraction of TBA is shown in the upper panel of Figure 3.2. The 

simulated )](11[ kLε−  at zero TBA mole-fraction has been compared with that from 

extended reference interaction site model (XRISM) calculation by Raineri and 

coworkers61 and is shown in the inset of the same panel. Note that the peak value of 

)](11[ kLε−  from XRISM is more pronounced than that of MD simulation. Also, the 

peak position from XRISM is slightly shifted towards larger value of σk . This because 

the value of σ  is greater in XRISM calculation than that in our MD simulation. The 

characteristics of the )](11[ kLε−  at different molefractions are plotted in the lower 

panel of Fig. 3.2. It should be noticed that the peak height of )](11[ kLε−  curve 

decreases with increasing TBA molefraction.  The full width at half maximum 

(FWHM) of the )](11[ kLε−  curve increases from pure water to XTBA=0.04 then 

slightly decreases at XTBA=0.10 and increases again with further increase of TBA 

concentration. Note also that the second peak in  )](11[ kLε−  calculated from 

XRISM is having negligible contribution in predicting the limiting molar ionic 

conductivity. 
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3.3.2 Calculation of the Longitudinal Component of Generalized 

Rate of Solvent Polarization Relaxation, ),(
10∑ zk   

As described in chapter 2 (Eq. 2.13) the wave number and frequency dependent 

generalized rate of solvent polarization relaxation, ),(
10∑ zk , contains two dissipative 

kernels – the rotational kernel ( ),( zkRΓ ) and the translational kernel ( ),( zkTΓ ).39, 62-64 

The translational dissipative kernel, ),( zkTΓ ,   has been calculated by using the 

isotropic dynamic structure factor of the effective dipolar medium while the rotational 

kernel ),( zkRΓ at k→0 limit is directly related to the experimentally determined 

frequency dependent dielectric function, )(zε  and is given by Eq. 2.14. For other 

details about the calculation see section 2.3.1 of chapter 2. 

 

The dielectric relaxation function that has been used in the calculation expressed as 

follows: 
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where z is Laplace frequency, ∞ε  is the limiting value of )(zε  at high frequency jτ  

the relaxation time for  the  jS  dispersion.  The parameters iα  and iβ  determine the 

shape of a relaxation spectrum. jΩ  and jj Ωγ 2=  stand respectively for the 

resonance frequency and the damping constant for the contribution coming from high 

frequency modes that has been described using the damped harmonic oscillator 

model. For our calculation in TBA-water mixture, we have used dielectric relaxation 

data measured by Mashimo and coworkers65 who recorded the frequency dependent 

dielectric function in the range of 1 MHz – 20 GHz. The dielectric relaxation 

parameters used in the calculation are given in Table 3.1. These data have been best 

fitted to a single non-Debye relaxation process. As shown in Fig. 3.3 that the 

relaxation time, 1τ , is linearly increasing with increasing TBA mole fraction but the 

exponents, 1α  and 1β ,  deviate from linearity as one adds TBA in water.  The 

deviation from unity as well as from linearity of these exponents clearly indicates the  
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Table 3.1: Dielectric relaxation parameters used in the calculation (a) 

 XTBA=0.00 XTBA=0.04 XTBA=0.10 XTBA=0.15 XTBA=0.20 XTBA=0.30

  ε0 78.30 70.3 54.0 45.6 40.1 28.1 
  S1 72.12 66.0 51.2 42.2 37.1 25.0 
  τ1(ps) 8.32 19.95 31.62  42.66 50.12 74.13 
   α1 1 0.822 0.776  0.731 0.734 0.738 
   β1 1 0.989 0.979  0.946 0.955 0.958 
  S2 1.69 - - - - - 
  τ2(ps) 1.02 - - - - - 
   α2 1 - - - - - 
   β2 1 - - - - - 
  S3 0.29 0.1 - - - - 
Ω3(cm-1) 69.3 69.3 - - - - 
  S4 2.10 2.1 - - - - 
 Ω4(cm-1)  193 193 - - - - 
 S5 0.33 0.28 0.95 1.05 1.12 1.20 
 Ω5(cm-1)  685 685 685 685 685 685 
 nD

2 1.77 1.82 1.85 1.86 1.88 1.90 
 

(a) The relaxation parameters for the slowest dispersion step have been taken from Mashimo 

et al.65 except for pure water for which the relaxation parameters have been taken from ref. 

39. 
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Figure 3.3: The dielectric relaxation parameters for the slowest dispersion step as a function 

of TBA mole fraction. 
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growth of solution heterogeneity upon addition of TBA in the aqueous mixture. It 

should also be noted that the measured ∞ε  is approximately 3 to 5 for all the TBA 

mole-fractions studied here. Therefore, the dispersion, 2
Dn−∞ε  (nD being the 

refractive index), is missing in these data due to the limited resolution available to 

these authors. However, it has been observed before that such missing relaxations 

have played an important role in determining both the ionic conductivity and the early 

part of the solvation dynamics in pure solvents39 and therefore could be crucial in 

such mixtures as well.  In our calculation we have assumed that the librational bands 

that are present in pure water account for the relaxation from ∞ε to 2
Dn  at all the 

composition studied here.  The other essential parameters required in the calculation 

are provided in Table 3.2. 

 

3.4 Numerical Results and Discussion 

3.4.1 Li+ in Water-TBA 

In Fig. 3.4 we have shown the calculated limiting molar ionic conductivity, Λ0 and 

Walden product, Λ0η0,for Li+ ion as functions of TBA molefraction, XTBA, in aqueous 

TBA mixture and compared with the experimental results. The theoretical results are 

shown by open circles and experimental results by filled circles. The predicted values 

of Λ0 and Λ0η0 with the static correlations calculated from MSA for ions in dipolar 

mixture21,58 are shown by open triangles. We shall keep this notation fixed hereafter.  

The experimental data are taken from the works of Broadwater and Kay.1  It is quite 

evident from the upper panel of this figure that the predictions from the present theory 

are appreciably good at all the composition studied here. Also, as shown in the lower 

panel of the figure, the non-monotonic dependence of WP observed in experiments is 

found in the present theoretical study as well.  However, the position of the peak in 

the calculation is found to be at XTBA ≈ 0.15 whereas in experiment it is at XTBA=0.10. 

Also the value of the peak in WP is greater than that reported in experiments. It is also 

clear from Fig. 3.4 and the subsequent figures that the MSA type correlations of 

asymmetric dipolar hard-sphere mixture21,58 are not that adequate to predict the 

experimental conductivity in water-TBA mixtures.  
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Figure 3.4: Upper panel: Limiting molar ionic conductivity of Li+ ion in TBA-water 

mixture. Lower panel: Relative WP for Li+  ion. Diameter of Li+ ion used in the calculation is 

taken to be 1.18Å. 

 

 

 

Table 3.2: Solution parameters used in the calculation (a)  

 XTBA=0.00 XTBA=0.04 XTBA=0.10 XTBA=0.15 XTBA=0.20 XTBA=0.30

Viscosity 
(cP) 

0.89 1.85 3.24 3.97 4.44 4.98 

Density 
(gm/cc) 

0.997 0.976 0.940 0.919 0.898 0.865 

 
(a) From ref: Broadwater and Kay, J. Phys. Chem. 74, 3802 (1970). 
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3.4.2 Na+ in Water-TBA 

The limiting molar ionic conductivity (upper panel), and Walden product (lower 

panel) for Na+ ion in water-TBA mixture is shown in Fig. 3.5. Note that the 

theoretical value of limiting molar ionic conductivity is quantitatively agreeing with 

the experimental data.1 The non-monotonic dependence of WP is captured by the 

present theory for this case also.  Though the value of WP at all the composition is 

different, the WP ratio peaks at the alcohol mole-fraction very close to that found in 

experiments.  Here again the predictions from the present theory are rather poorly 

described if one incorporates static correlations (solvent-solvent) from MSA model of 

binary dipolar mixture. 
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Figure 3.5: Upper panel: Limiting molar ionic conductivity of Na+ ion in TBA-water 

mixture. Lower panel: Relative WP for Na+ ion. Diameter of Na+ ion in the calculation is 

taken to be 1.94Å. 
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3.4.3 K+ in Water-TBA 

In Fig. 3.6 we show the calculated and experimental results for K+ ion. The agreement 

between the theory and experiments for this ion is not as quantitative as found for 

other ions discussed above. The theoretical value of the limiting molar ionic 

conductivity of K+ is smaller than the experimental ones at all the TBA mole fractions 

studied.  But the basic trend is well captured by the present theory. 

 

3.4.4 C1 in Water-TBA 

The limiting molar ionic conductivity, Λ0, for an organic ion, tetra-methyl-

ammonium, C1, as a function of TBA molefraction is shown in Fig. 3.7. In this case 

also the predicted values of Λ0  from the theory is smaller for all the compositions. 

But, the trend is similar to that of experiment.     

 

3.4.5 C4 in Water-TBA 

The calculated results for a relatively large organic ion, tetra-butyl-ammonium, C4, at 

different composition of water-TBA mixture is shown in Fig. 3.8. The calculated 

value of Λ0   for C4 ion with slip boundary condition applied in calculating bare 

friction is larger than the experiments for TBA molefraction up to 0.10, the deviation 

becomes maximum for pure water. Note, however, that being larger in size the 

dielectric friction is negligible for C4 ion in comparison to the bare friction (calculated 

from Stokes’ law). The stick boundary condition is also examined considering the 

possibility that C4 ion might interact with the medium more strongly due its propeller-

type shape. Interestingly, at very low TBA mole-fractions ( 1.0≤TBAX ) calculations 

with stick boundary condition agree well with the experiments whereas predictions 

with slip boundary condition seem to describe well the experimental results at higher 

alcohol concentrations ( 1.0≥TBAX ). Since the dielectric friction is much less for ions 

with much larger ion-solvent size ratio, the dominance of the Stokes’ friction in 

controlling the mobility of larger ions is expected. However, the apparent necessity of 

two different boundary conditions (in order to describe the limiting conductivity of C4 

ion) at extremely low and relatively high TBA concentrations is what requires further 
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Figure 3.6: Limiting molar ionic conductivity of K+ ion in TBA-water mixture. The 

diameter of K+ ion in the calculation is taken to be 2.76Å. 

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30

40

50
C1 

Experiment

TheoryΛ
0(

S 
cm

2  m
ol

e-1
)

XTBA

        Theory
(MSA Binary Mixture)

 
Figure 3.7: Limiting molar ionic conductivity of C1 ion in TBA-water mixture. The 

diameter of C1 ion in the calculation is taken to be 7.14Å. 
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Figure 3.8: Limiting molar ionic conductivity of C4 ion in TBA-water mixture. The 

diameter of C4 ion in the calculation is taken to be 10.0Å. Λ0 calculated with bare friction 

using stick and slip boundary conditions are shown by open circles and squares, 

respectively. The predicted values of Λ0 calculated with static correlations from MSA 

for ions in asymmetric binary dipolar mixture are shown by open triangles. 

 

discussion. It may be recalled that several experimental and simulation studies have 

indicated strengthening of the three-dimensional H-bonding network of water upon 

addition of TBA.2-17 The strengthening effects in this regime have also been detected 

in a recent study where TBA mole-fraction induced large red-shift in the absorption 

spectrum of a dipolar solute probe has been observed.66-67 The stronger H-bonding 

network is then likely to exert more friction on the moving ion. This is akin to the 

enhancement of the local viscosity due to the presence of more structured solvent 

surrounding the ion.  Now the tetrahedral water-like network structure progressively 

converts into a more alcohol-like zigzag chain structure upon further addition of TBA 

in the aqueous mixture. The structural transition is found to take place at TBA mole-

fraction ~0.10.1-17 Since this alcohol mole-fraction induced transition reduces the 

stiffness in the solution structure, the bare friction becomes more close to that 

described by the slip boundary condition. Consequently, calculations with slip 
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boundary condition agree better to the experimental data at higher TBA mole 

fractions.  

 

Since, the conductivity of large ions at infinite dilution is supposed to be inversely 

proportional to the solution viscosity (Stokes’ law), the Walden product (WP) for C4 

However, WP for C4 shows a linear increase with increasing TBA concentration (see 

Fig. 3.1).  This means that the proportionality relation breaks down for large ions in 

water-TBA mixtures. One of the reasons for the observed linear increase of the WP 

for C4 ion might be that the rate of increase of viscosity with TBA mole-fraction is 

greater than the rates of decrease of conductivity across the mixture compositions. 

This decoupling of ion mobility from the solution viscosity is a reminiscent of what 

has been observed for various super-cooled systems and therefore requires further 

study. Computer simulation studies of viscosity with more realistic   model potentials 

could be particularly helpful to unravel the mechanism of the apparent decoupling.  
 

3.5 Conclusion  

We have used a microscopic theory to calculate the alcohol mole fraction dependent 

limiting ionic conductivity of singly charged cations in water-TBA mixtures where, as 

input to the calculations, solvent-solvent static correlations have been supplied from 

our own molecular dynamics (MD) simulation studies. The limiting ionic 

conductivities predicted by the present theory are found to be in good agreement with 

the relevant experimental data. The limiting molar ionic conductivity of a given ion 

decreases with increase of TBA molefraction because of two factors: (1) the solution 

viscosity increases hence bare friction and (2) the relaxation time increases and so the 

dielectric friction. The gradual decrease of limiting ionic conductivity with increasing 

TBA mole-fraction has been explained satisfactorily by the present theory even for 

smaller ions where contribution of Stokes’ friction (that is the effect of viscosity) is 

less than the dielectric friction. Our analyses reveal that the non-monotonic alcohol 

mole fraction dependence for small ions originates from the static structural 

heterogeneity of water-TBA solution. The solvent-solvent static correlations adopted 

from MSA are unable to capture this microscopic heterogeneity present in real water-

TBA mixture. Unlike the scenario in neat polar solvents, the limiting molar ionic 
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conductivity of relatively large tetra-butyl-ammonium ion, for which the magnitude of 

the dielectric friction is found to be negligible, cannot be understood from the Stokes-

Einstein relation in these mixtures. Further studies, possibly molecular dynamics 

simulations with better model potentials that can reproduce the solution structure 

closest to the real systems, are therefore required to understand the ion conductivity in 

these kinds of binary polar mixtures. 
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Chapter 4 

 
Ion Solvation in Asymmetric Binary 

Dipolar Mixture 

 
4.1 Introduction 

Polarity of a medium is often found to have significant effects on the course and the 

outcome of a reaction in solution phase.1-2  Mixed dipolar solvents are good reaction 

media because one can tune polarity, solubility etc. by altering the composition of a 

mixture. The tuneable polarity of a binary mixture is the key for selective dissolution 

and precipitation of reactants and/or products of a solution phase chemical reaction. 

Polar binary mixtures are therefore better reaction media than neat solvents. Size 

disparity in the constituent solvent molecules can have profound effects on both the 

equilibrium and dynamical properties of a solution. An increase in size of one of the 

species is likely to inhibit its ability to solvate an ion due to packing constraints. 

Therefore, relatively smaller molecules will be preferred giving rise to what is widely 

known as preferential solvation. Interestingly, the inter-diffusion of these two types of 

molecules can make solvation considerably slower than that in a one-component 

solvent.3-5 Moreover, simulation studies have indicated that the slow exchange of one 

solvent species by the other in the adjacent solvent shells may not hold for mixtures 

with widely different effective volumes.6 

 

Electrolyte solution in binary mixture is another important medium.7-8 Addition of 

electrolytes not only enhances the average polarity of the medium but also takes part 

in altering the reaction equilibrium by inducing salting in or salting out effects. 

Moreover, interaction between ions and a dissolved solute (reactive or non-reactive 

polar molecule) competes with the preferential solvation and hence modifies the 

average solvation structure around the dissolved solute.  The competition becomes 

even more interesting for a binary polar mixture where the relatively bigger (in size) 

solvent molecule possesses a larger dipole moment. Such competition is likely to 
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affect the long-time dynamics of the solvent response. Naturally therefore, studies of 

structure and dynamics of the environment around an ionic or dipolar solute are 

essential for understanding the solvation processes and their effects on simple 

chemical events in such media.9-10  

 

Several studies have already been carried out for determining the structure in binary 

polar mixtures.11-13 For example, Adelman and Deutch12 extended the Wertheim’s 

solution for pure fluids11 using the mean spherical approximation14 (MSA) into the 

binary polar mixture where solvent molecules of different species were characterized 

by equal hard sphere diameters ( 21 RR = ) with point dipoles of different magnitude at 

the centre ( 21 μμ ≠ ) of these hard spheres. Isbister and Bearman solved the MSA for 

completely asymmetric binary fluid mixture13 ( 21 RR ≠  and 21 μμ ≠ ).  Subsequently, 

MSA was developed for electrolyte solution consisting of hard ions (charged hard 

spheres) in neat dipolar solvent and used to obtain the solvent structure around a 

dissolved ion.15 Recently, MSA has been used to study the polarization structure 

around an ion in binary polar mixture composed of solvent molecules of equal size 

but different dipole moments ( RRR ≠= 21 , R is the diameter of ion and 21 μμ ≠ ).16  

All these studies have contributed significantly to the understanding of solvation 

structure in terms of ion-solvent and solvent-solvent interactions.  However, solvent 

polarization structure around an ion in a mixture of dipolar solvents with arbitrary size 

and dipole moments (that is, RRR ≠≠ 21  and 21 μμ ≠ ) have not been studied yet. 

Such a study is very important because many thermodynamic properties of electrolyte 

solutions in binary polar mixtures depend on the partial polarization densities of the 

constituent solvents around the dissolved ions.  

 

Here we use MSA in order to obtain analytical expressions for partial solvent 

polarization densities and Born free energies of solvation in an electrolyte solution of 

a completely asymmetric binary polar mixture. We restrict our study for symmetric 

uni-univalent electrolyte in the limit of infinite dilution. One of our goals here is to 

investigate the effects of relative size of the constituent solvents on Born free energy 

of solvation for a dissolved ion in model binary polar mixtures and partial solvent 

polarization densities around a dissolved ion. The calculation of partial solvent 

polarization densities is crucial since it provides a microscopic explanation for the 
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often observed non-ideal composition dependence of Born free energies of solvation 

in mixtures.  Subsequently, the calculation scheme is applied to obtain the partial 

solvent polarization densities around a uni-positive rigid ion dissolved in room 

temperature binary mixtures of methanol-water, ethanol-water and tertiary butyl 

alcohol (TBA)-water and dimethyl sulfoxide (DMSO)-acetonitrile solutions. Note 

here that in the present theory the solvent components constituting the binary mixtures 

are characterized only by their molecular diameters and dipole moments. Specific 

interactions such as hydrogen bonding between solvent molecules of same species as 

well as between different species and hydrophobic interactions between alkyl groups 

of the alcohols have not been considered. Also, attempt has not been made in the 

present extension of the MSA to include any specific ion-solvent interaction that may 

be possible through the participation of lone pair of electrons on oxygen atom in water 

or alcohol molecules (for ion in alcohol-water mixtures) and in DMSO molecule (for 

ion in DMSO-acetonitrile mixtures). Therefore, these binary mixtures are much 

simplified versions of the real solutions and the neglect of these specific and complex 

interactions may lead to predictions very different from experimental results.    

Therefore, explicit potentials17-20 that are generally used in simulation studies to 

represent the interactions more realistically in these systems have not been 

considered. This is because the present work focuses on, within the extended MSA 

framework, exploring the contributions to the non-ideality in the Born free energy of 

solvation originating purely from the ion-solvent and solvent-solvent size ratios as 

well as from the differing dipole moments.  

 

Alcohol-water mixtures are known to exhibit anomalous thermodynamic properties at 

low alcohol concentrations.21-22 Extensive experimental23-44 and simulation45-55 studies 

have been carried out to investigate the liquid structure in alcohol-water mixtures. All 

these studies linked the deviation of a given property from its expected value with the 

modification of water structure in presence of alcohol, the deviation being the 

maximum for TBA. The solvation free energies can reflect the underlying solvent 

structure around these ions determined by a delicate balance of complex 

intermolecular interactions between the alcohol and water molecules. The calculated 

excess Born free energy of solvation in TBA-water indicate that at low TBA 

concentration, ions with size larger than or equal to that of a water molecule (for 

example, Cs+ or Bu4N+) show a composition dependence very different from that for 
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smaller ions like Li+. This is in sharp contrast to the more ‘regular’ ion size 

dependence of excess Born free energy of solvation in methanol-water and ethanol-

water mixtures. 

 

The DMSO-acetonitrile is interesting because the larger component (DMSO) 

possesses higher dipole moment.2,56 This leads to a competition in packing around a 

dissolved ion in DMSO-acetonitrile mixture. Moreover, the molecular diameters of 

these solvents are similar2,56 and hence the nonideality in polarization structure (and 

hence in Born free energy of solvation) is expected to be weaker. In contrast, the 

dipole moment of water is slightly larger than the alcohols studied here but the size is 

considerably smaller. This assists water molecules to be preferably chosen in the first 

solvation shell and hence the nonideality is likely to be stronger. Naturally therefore, 

larger ions would be able to accommodate the larger solvent components leading to a 

more ‘homogeneous’ solvation structure. This, in turn, will render the nonideality 

weaker.  

      
The organization of the rest of the chapter is as follows. Sec. 4.2 contains the details 

of the theoretical formulation. Numerical results along with discussion are presented 

in Sec. 4.3. Finally, we end this chapter with conclusion in section 4.4.  

 

4.2 Theoretical Formulation 

Recently, Morillo et al. have extended the MSA theory to study the solvent structure 

around a hard sphere ion dissolved in a binary dipolar mixture.16 These authors have 

modelled the binary mixture as a collection of dipolar hard spheres of equal size but 

with different dipole moments on different species and made use of the results of 

Adelman and Deutch12 and those of Chan et al.15. In the present work we are studying 

solvent structure around an ion in a binary mixture of fluids made up of dipolar hard 

spheres with unequal radii and dipole moments. We have, therefore, used the MSA 

frameworks provided by Isbister and Bearman,13 Chan et al.14  and Blum et al.57-61   
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4.2.1 Model Description 

Let us now consider a solution of an electrolyte of equal-sized ions in a binary dipolar 

mixture. The dipolar solvent molecules are treated as hard spheres with point dipoles 

situated at the centre.15 The solvent dipoles are of two types characterized by different 

sizes and different dipole moments. Let iR and jR be the hard sphere diameters of the 

two types of solvent molecules with dipole moments iμ  and jμ , respectively. The 

solvent number densities are iρ and jρ . Here, ji RR ≠  and ji μμ ≠ . The ions are hard 

spheres of equal diameters with embedded point charges. The electro-neutrality of 

such a solution is ensured by setting15-16,62-63  

 

                                                  0=∑ α
α

αρ z                                                            (4.1) 

where αρ denotes the number density of ionic species α with charge αz and 

diameter RR =α . 

 

4.2.2 Interaction Potentials among Different Species 

The interaction potentials between different species consists of a hard core repulsive 

term and ion-ion, ion-dipole and dipole-dipole components given by62-63 

 

( ) rezzru 2
βααβ = ,                          RRr => αβ                                                    (4.2) 

( ) 2
22 rEezu jj μαα −=ωr, ,             ( ) 2jj RRRr +=> α                                       (4.3) 

( ) 2
11, rEezu ii μββ =rω ,                 ( ) 2RRRr ii +=> β                                        (4.4) 

( ) 3
1221 , rDu jiij μμ−=ωr,ω ,        ( ) 2jiij RRRr +=>                                       (4.5) 

 

where α, β indices are for ions and i, j indices are for dipoles. ( )
∧∧

⋅= rωμ iiE  and 

( ) ( )2112 ωμIrr3ωμ
∧∧∧∧

⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅=D  describe the angle dependent parts of the interaction 

potentials. In above equations, e represents the elementary charge, I denotes a 33×  

unit tensor, and 
∧

r  is the unit vector from the molecule denoted by the first index 
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towards the one denoted by second index. The orientation of ith type dipole is 

described by iω .  

 

4.2.3 Ornstein-Zernike (OZ) Relations for the System of Ions in    

Binary Mixture 

The Ornstein-Zernike (OZ) relations for the correlation functions in an electrolyte 

solution of binary dipolar mixture are written as16,62-63 

 

3ω3 sωsrssrs 〉−〈+−+= ∑ ∫∑ ∫ ),()()()()()( βαγβγα
γ

γαβαβ ρρ kk
k

k hcdshcdrcrh     (4.6)                              

3ω233222 ωs,ωωs,rsωs,srsωr,ωr, 〉−〈+−+= ∑ ∫∑ ∫ ),()()()()()( kjk
k

kjjj hcdhcdch αγγα
γ

γαα ρρ

                                                                                                                                  (4.7) 

3ω331111 sωωs,r,ωssrωsr,ωr,ω 〉−〈+−+= ∑ ∫∑ ∫ ),()()s(),()()( βγβγ
γ

γββ ρρ kik
k

kiii hcdhcdch

                                                                                                                                  (4.8) 

)(),()()( 212121 ωs,srωsωr,,ωωr,,ω jiijij hcdch γγ
γ

γρ −+= ∑ ∫    

                                                               
3ω2331 ωs,ωωs,r,ωs 〉−〈+ ∑ ∫ ),()( βρ kik

k
k hcd  

                                                                                                                                  (4.9)                               

where c and h denote the direct and total (or indirect) correlation functions, 

respectively. ∫=〈〉 ωω dπ41 , denoting angular convolution. 

 

4.2.4 MSA Closure  

The MSA closure conditions here are given by 16,62  

 

1)( −=21 ωr,,ωIJh ,                             c
IJRr <                                                        (4.10) 

( ) )()( 1
2121 ωr,,ωωr,,ω IJBIJ uTkc −−= ,       c

IJRr >                                               (4.11)                     

                             

where jJiI ,;, βα == . Here upper case Latin indices run over both Greek and Latin 

indices. The arguments of the correlation functions should be adjusted depending on 
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the indices. For, if two Greek indices are present, the argument is only r. A Greek and 

a Latin index means arguments are r andω . The ω  can be 1ω  or 2ω  depending on 

whether Latin index is on first or second place. Two Latin indices carry the all 

arguments as in the above equations. kBT is the Boltzmann constant times the absolute 

temperature.  

 

4.2.5 Multiplication Table for 1, Ei, Dij and  ijΔ  

The angular functions 1, Ei, Dij, and ( ) ( )ji . ωμωμ
∧∧

=Δ ij  form a closed set under the 

angular convolution
3ω2331 ω,ωω,ω 〉〈 )()( BA . Multiplication tables for these 

quantities are taken from Ref. 15. 

 

Table 4.1: Multiplication Table for the Angular Convolution
3ω2131 ω,ωω,ω 〉〈 )()( BA  

 
        ),(B 23 ωω    

),(A 31 ωω        
 

1 
 
32Δ  

 
32D  

 
3E  

 
2E  

1 1 0 0 0 2E  

13Δ  0 3/12Δ  3/12D  3/1E  0 

13D  0 3/12D  3/)2( 1212 Δ+D  3/2 1E  0 

3E  0 3/2E  3/2 2E  3/1  0 

1E  1E  0 0 0 3/)( 1212 Δ+D
 
 
 

4.2.6 Ion-solvent and Solvent-solvent Correlation Functions in 

Electrolyte Solution of Binary Dipolar Mixture 

Now the Ornstein-Zernike (OZ) relation can be used to obtain the MSA solution for 

the correlation functions in an electrolyte solution of binary dipolar mixture.15,61  

Subsequently, the algebra described in Chan et al.15
 leads to the following ansatz62 

 

 )()()( rfzzrfrf CHS
αββααβαβ +=                                                                                (4.12)      

2)()()( Erfzrff E
j

HS
jj αααα +=2ωr,                                                                           (4.13)     

 1)()(),( Erfzrff E
i

HS
ii ββββ −=rω1                                                                           (4.14)    
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 1212 )()()(),( Drfrfrff D
ijij

HS
ijij +Δ+= Δ

21 ω,r,ω                                                   (4.15) 

 

where Cf  represents the charge-charge correlations, Ef the charge-dipole 

correlations and, Df  and Δf  the dipole-dipole correlations. The relevant angle 

independent closure conditions are15,62 

 

( ) reTkrc B
C 21)( −−=αβ ,            Rr >                                                                    (4.16)   

( ) 21)( reTkrc jB
E
j μα

−= ,            jRr α>                                                                  (4.17)    

( ) 21)( reTkrc iB
E
i μβ

−= ,            βiRr >                                                                   (4.18)  

( ) 31)( rTkrc jiB
D
ij μμ−= ,          βiRr >                                                                   (4.19) 

 

where TkB represents the Boltzmann constant times the absolute temperature. Using 

the following definition of three dimensional Fourier transform  

 

)()(~
21

rk
21 ωr,,ωrωk,,ω fedf i ⋅∫= ;    chf ~or ~~

=                                                 (4.20) 

 

we obtain the OZ equations in the Fourier space as61-62 

 

3ω33 kωωk, 〉〈++= ∑∑ ),(~)(~)(~)(~)(~)(~
βαγβγα

γ
γαβαβ ρρ kk

k
k hckhkckckh                 (4.21)       

3ω233222 ωk,ωωk,ωk,ωk,ωk, 〉〈++= ∑∑ ),(~)(~)(~)(~)(~)(~
kjk

k
kjjj hchkcch αγγα

γ
γαα ρρ                    

                                                                                                                                (4.22)                               

3ω331111 kωωk,,ωkωk,ωk,ω 〉〈++= ∑∑ ),(~)(~)(~),(~)(~)(~
βγβγ

γ
γββ ρρ kik

k
kiii hckhcch  

                                                                                                                                (4.23)    

3ω2331212121 ωk,ωωk,,ωωk,kωωk,,ωωk,,ω 〉〈++= ∑∑ ),(~)(~)(~),(~)(~)(~
kjik

k
kjiijij hchcch ρρ γγ

γ
γ

                                                                                                                                (4.24)  

                                                                                                                                                               

where, 
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)(~)(~)(~ kfzzkfkf CHS
αββααβαβ +=                                                                                (4.25)     

2
~)(~)(~)(~ Ekfzkff E

j
HS
jj αααα +=2ωk,                                                                          (4.26)     

1
~)(~)(~),(~ Ekfzkff E

i
HS

ii ββββ −=kω1                                                                           (4.27)   

1212
~)(~)(~)(~),(~ Dkfkfkff D

ijij
HS

ijij +Δ+= Δ
21 ω,k,ω                                                  (4.28) 

 

and 

 

( )
∧∧

⋅= kωμ i
~

iE ,       i = 1, 2                                                                                      (4.29) 

( ) ( )2112D~ ωμIkk3ωμ
∧∧∧∧

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=                                                                             (4.30)   

                    

Here each )(~ kf  is related to corresponding )(rf  by   nth order Hankel transform15-16 

and the order of the transformation depends on the type of the correlation functions. 

Note that the last term in Eqs. (4.21)–(4.24)  account for the angle averaged 

correlations between an ion and a dipole, and two dipoles of same and different types. 

Therefore, the summation runs over all solvent components present in the binary 

mixture. This term arises due to the difference in solvent size. Also, this term is absent 

in the works of Chan et al.15 since it deals with electrolyte solution in one component 

dipolar solvent.  Furhter, these expressions reduces to those obtained by Morillo et 

al.16  for binary mixtures in the limit of  equal solvent size (Ri = Rj) but different 

dipole moments ( ji μμ ≠ ). We will come back to this point when we present 

numerical results. However, the first two terms are similar to those in Chan et al.15 as 

these generalize the ion-ion, ion-dipole and dipole-dipole correlations with summation 

over all ionic species in electrolyte solution of binary dipolar mixtures. 

 

 If we define two orthogonal angular functions using 12Δ  and 12
~D  as15,62  

 

)~(
3
1

121212 DJ +Δ=+                                                                                                  (4.31) 

)~2(
3
1

121212 DJ −Δ=−                                                                                                (4.32) 
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with coefficients 

 
D

ijijij fff ~2~~
+= Δ+                                                                                                      (4.33) 

D
ijijij fff ~~~

−= Δ−                                                                                                         (4.34) 

 

and substitute in Eq. (4.28) we get 

 
−−++ ++= 1212 )(~)(~)(~),(~ JkfJkfkff ijij

HS
ijij 21 ω,k,ω                                                    (4.35) 

 

Carrying out the angular convolution in Eqs (4.21)-(4.24) and using the charge 

neutrality condition, and setting16,62 

 

∑=
γ

γγρρ 2zc                                                                                                           (4.36) 

∑=
γ

γρρ I                                                                                                              (4.37) 

 

we obtain the following  coupled  set of equations for the correlation functions due to 

hard sphere interaction: 

 

)(~)(~)(~)(~)(~)(~ khkckhkckckh HS
k

HS
k

k
k

HSHS
I

HSHS
βαγβαγαβαβ ρρ ∑++=                                   (4.38) 

)(~)(~)(~)(~)(~)(~ khkckhkckckh HS
kj

HS
k

k
k

HS
j

HS
I

HS
j

HS
j αγαγαα ρρ ∑++=                                   (4.39) 

)(~)(~)(~)(~)(~)(~ khkckhkckckh HS
k

HS
ik

k
k

HSHS
iI

HS
i

HS
i βγβγββ ρρ ∑++=                                   (4.40) 

)(~)(~)(~)(~)(~)(~ khkckhkckckh HS
kj

HS
ik

k
k

HS
j

HS
iI

HS
ij

HS
ij ∑++= ρρ γγ                                   (4.41) 

 

These equations define a mixture of hard spheres with diameter RR =α  at number 

density Iρ  and diameter iR  at density iρ  with Percus-Yevick (PY) closure14-16,62 

Simultaneously, the correlations due to the electrostatic interactions between ions, 

ion-dipole and dipoles are described by the following set of coupled equations62   
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)(~)(~
3
1)(~)(~)(~)(~ khkckhkckckh E

k
E
k

k
k

CC
c

CC
βαγβαγαβαβ ρρ ∑−+=                                        (4.42) 

)(~)(~
3
1)(~)(~)(~)(~ khkckhkckckh kj

E
k

k
k

E
j

C
c

E
j

E
j

+∑++= αγαγαα ρρ                                         (4.43) 

)(~)(~
3
1)(~)(~)(~)(~ khkckhkckckh E

kik
k

k
CE

ic
E

i
E

i βγβγββ ρρ +∑++=                                           (4.44) 

)(~)(~
3
1)(~)(~)(~)(~ khkckhkckckh kjik

k
k

E
j

E
icijij

++++ ∑+−= ρρ γγ                                           (4.45) 

 

Since the electrostatic Coulomb potential is longitudinal field and couples with  +
12J  

function alone, the addition of ions therefore affects only the longitudinal response 

( +
ijh ).15 Hence,  −

12J  function is decoupled from the rest and we obtain the following 

equation11-16,62  

 

)(~)(~
3
1)(~)(~ khkckckh kjik

k
kijij

−−−− ∑+= ρ                                                                      (4.46)  

 

4.2.7 Born Free Energy of Solvation of an Ion in a Binary Dipolar   

Mixture 

The Born free energy is defined as “the change in free energy due to electrostatic 

interactions for the transfer of one ion from vacuum into the solution”.15 The Born 

free energy of solvation for an ion of charge ezα  can be obtained from Eqs. (4.42)-

(4.45) with the condition 0=cρ . Since the functions )(~ kf C
αβ , )(~ kf E

jα , )(~ kf E
iβ  and 

)(~ kf D
ij , which describe electrostatic interactions,  depend only upon k=k  and 

therefore these quantities can be transformed back to r-space by using the following  

one-dimensional Fourier inverse transform 

 

∫
+∞

∞−

−= )(~
2
1)( kfdkexF ikx

π
                                                                                        (4.47) 

 

where F  can be CFαβ , E
jFα , E

iF β , Δ
ijF  or D

ijF  and  f~  can be Cfαβ
~ , E

jfα
~ , E

if β
~ , Δ

ijf~  or D
ijf~ . 
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The relation between all f ‘s and F ’s  are given by15-16,62-63 

 

∫
∞

=
x

CC rrfrxdrPxF )()(2)( 0 αβαβ π ,          ∫
∞

=
x

E
j

E
j rrfrxdrPxF )()(2)( 1 αα π ,     

∫
∞

=
x

E
i

E
i rrfrxdrPxF )()(2)( 1 ββ π ,          ∫

∞
ΔΔ =

x
ijij rrfrxdrPxF )()(2)( 0π ,   

∫
∞

=
x

D
ij

D
ij rrfrxdrPxF )()(2)( 2π                                                                                (4.48) 

 

where 1)(0 =xP , xxP =)(1 ,  )13(
2
1)( 2

2 −= xxP  are Legendre polynomials. In an 

equivalent way, one can write as 
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 The Born energy of a single ion of charge ezα  dissolved in a dipolar mixture is given 

by16,62 

ωωrωrr 〉〈= ∫∑ ),(),( kk
k

kBorn gudE ααρ )(
3

4 2

rhdrez E
k

Rk
kk

k

α
α

α

μρπ
∫∑
∞

−=                   (4.50)                              

 where the second equality follows because 0)( =rh E
kα  for kRr α<  . We now need to 

find )(rhdr E
k

R k

α

α

∫
∞

 for evaluating BornE . This is calculated from the ion-dipole correlation 

function  as follows15-16,62 
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  where ∫
∞

=
jR

E
j

E
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α

αα π )(2H1  is a constant that needs to be determined.  Equation 

(4.50) and the above discussion now provide the following expression of Born energy 

( BornE ) for an ion dissolved in binary mixture of dipolar solvents with unequal size 

and different dipole moments       
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 From Eq. (4.51) when αα jj RxS ≤<   
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where )(xQ jk
+  depends solely on the dipolar mixture properties and is given by15,58,62-

63 
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where the values of  jia  and jib  are given in the Appendix at the end of present 

chapter.  
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Eq. (4.54) consists of two coupled simultaneous equations in E
jαH1  when 1=j , 2 and 

α  is fixed (a given ionic species). Using Baxter’s method we obtain the following 

expression for )(xC E
jα  
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with closure relation 

 

j
E
j exC βμπα 2)( = ,      αjRx ≥                                                                                  (4.57) 

 

Therefore,  from Eqs. (4.56) and (4.57), we obtain 
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Eq. (4.58) contains two coupled simultaneous equations in )(xQ E
jα when ,1=j  2 for a 

fixed α . By solving these two equations for j = 1 and 2 and applying the condition 

that  )()( yxQxQ E
j

E
j += αα  for αjRx ≥  we obtain the following expressions for 

)(xQE
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with  
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Solution of Eq. (4.54) at αjRx =  provides the following expressions of E
α1H1 and 

E
α2H1  as,62-63 
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Substitution of E
jαH1  (from Eq. (4.62) and Eq. (4.63)) into Eq. (4.52) provides the 

required expression for BornE . Born free energy ( BornF  ) of solvation is then calculated 

from the following relation15  
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4.2.8 Solvent Partial Polarization Densities of an Ion at Infinite 

Dilution in a Binary Dipolar Mixture   

In this section we give the expressions for partial polarization densities of constituent 

solvents around an ion with   charge ezα  at infinite dilution. The total polarization 

density about an ion with charge ezα   is defined as15-16,62  
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where )(rP kα  is partial polarization density of kth  species. Since E
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k hh αα =  one can 

write the above equation as  
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where )(rH E
kα is given by15,61 
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Since )(rQ jk
+  is known, )(rH E

jα  can easily be obtained numerically and hence ( )rPα . 

 

4.3 Results & Discussion 

This section consists of three parts. In the first part we present numerical results for 

the Born free energy of solvation and excess Born free energy of solvation of a 

dissolved ion in a model binary polar mixture. Here we show the effects of relative 

size of the constituent solvent components on the nonideality of these quantities for a 

given ion. We then present numerical results for systems consisting of unipositive 
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ions in binary polar mixtures where diameters and dipole moments of the solvent 

components used in the calculations are those of water, methanol, ethanol, tertiary 

butanol, DMSO and acetonitrile. The calculated results for the mole fraction 

dependent partial solvent polarization densities around an ion in these mixtures are 

presented in the second part where the microscopic origin for the observed nonideality 

is discussed. In the third part we compare the results for Born free energy of solvation 

and excess Born free energy of solvation of a dissolved ion in alcohol-water and 

DMSO-acetonitrile mixtures with available experimental results. All the numerical 

results presented here are calculated at temperature T=298.15 K. 

 

4.3.1 Born Free Energy of Solvation  

4.3.1.1 Born Free Energy in  Model Binary Mixtures 

In Fig. 4.1 we show the Born free energy of solvation of an ion, BornF , and excess 

Born free energy of solvation, BornFΔ , as a function of mole fraction of the second 

component (x2) whose dipole moment is larger than the other one. The parameters 

necessary for the calculation are given in Table 4.2. We have presented four sets of 

calculations for different solvent-solvent size ratios while the dipole moments ( 1μ and 

2μ ),  ion diameter (R) and total packing fraction (ς ) are kept fixed. The squares, 

inverted triangles, triangles and circles indicate calculations at R2=0.5R1, 0.8R1, R1 

and 1.2R1, respectively. It is clear from the above figure (upper panel) that the Born 

free energy of solvation increases non-linearly as one increases the mole fraction of 

the component which possesses larger dipole moment. Born free energy of solvation 

calculated for R1=R2 matches exactly with available results of Morillo et al.16. This  

 

Table 4.2: Parameters used in the calculation for model binary dipolar mixture (a) 

μ1 (D) μ2 (D) ς  R (Å) R1 (Å) R2 (Å) 

0.816 
 
 

1.632 
 
 

0.42 
 
 

2.88 
 
 

2.88 
 
 

(i) 0.5R1 
(ii) 0.8R1 
(iii) 1.0R1 
(iv) 1.2R1 

 

(a) μ1 and μ2 are dipole-moment of solvent  1 and 2, respectively. ς  is packing fraction, R, R1 

and R2 are diameters of ion, solvent components 1 and 2, respectively. D stands for Debye.  
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Figure 4.1: Born free energy of solvation, BornF  (upper panel) and excess Born free of 

solvation, BornFΔ  (lower panel) of a uni-positive, rigid ion as a function of mole fraction of 

second component (x2) with higher dipole moment at different solvent-solvent size ratios 

(R2/R1). The circles, triangles, inverted triangles and squares are for   solvent-solvent size 

ratio equal to 1.2, 1.0, 0.8 and 0.5, respectively. The line going through the points for each 

R2/R1 is a guide to the bare eye. The dipole moments of two solvent components ( 1μ  and 2μ ) 

and diameter of the ion (R) are kept fixed for all the solvent-solvent size ratios (Table 4.2). 
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indicates that the theory is correctly predicting the equal radii case.  Note also that the 

reduction in size of the solvent component possessing larger dipole moment enhances 

the Born free energy of solvation. As a result, the nonlinearity is most pronounced for 

R2=0.5R1. The extent of non-linearity, which is a measure of nonideality, is better 

understood in terms of the excess Born free energy of solvation, BornFΔ , calculated as 

follows: 16, 64   

 

)]0()1([)0()()( 222222 =−=−=−= xFxFxxFxFxF BornBornBornBornBornΔ            

                  [ ])1()0()1()( 22222 =+=−−= xFxxFxxF BornBornBorn                           (4.71) 

 

The second equality of Eq. (4.71) indicates that the excess Born free energy of 

solvation is the deviation in Born free energy of solvation for an ion at a given mole 

fraction  (x2) in a binary mixture from the sum of the mole fraction weighted Born free 

energies of solvation in the pure components. The excess Born free energy of 

solvation thus obtained is shown as a function of x2 in the lower panel of Fig. 4.1.  It 

is clear that the magnitude of nonideality increases as the size of the solvent having 

higher dipole moment is decreased. However, the peak positions of BornFΔ on the mole 

fraction axis do not change substantially as one alters the solvent-solvent size ratio. 

This is because the ion size is kept fixed. All these observations indicate that the 

degree of nonideality in a completely asymmetric binary mixture depends not only on 

the relative dipole moments but also on the relative sizes of the constituent solvent 

species. The solvent size ratio dependence of nonideality in the excess Born free 

energy of solvation of an ion in a binary mixture is one of the main results of the 

present work.     

 

4.3.1.2 Born Energy in Alcohol-Water Mixtures 

 We next apply the present scheme for calculating the Born free energy of solvation 

( BornF ) and excess Born free energy ( BornFΔ ) of uni-positive ions in alcohol-water 

binary mixtures. We have studied methanol-water, ethanol-water and tertiary butanol 

(TBA)-water mixtures.  The essential parameters2,56 used in the calculation are 

summarized in Table 4.3. The results obtained for Li+, Na+, Cs+ and C4 (quaternary 

tertiary butyl ammonium ion) in methanol-water mixture are shown in Fig. 4.2.  
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Figure 4.2: Upper panel: Comparison of Born free energy of solvation BornF  for Li+ 

(circles), Na+ (triangles), Cs+ (squares) and C4 (inverted triangles) ions as a function of mole 

fraction of methanol (xMeOH) in methanol-water mixture. Middle panel: Comparison of excess 

Born free energy of solvation BornFΔ  for Li+ (circles) and Na+ (triangles) ions as a function of 

mole fraction of methanol (xMeOH) in methanol-water mixture. Lower panel: Comparison of 

excess Born free energy of solvation BornFΔ   for Cs+ (squares) and C4 (inverted triangles) 

ions as a function of mole fraction of methanol (xMeOH) in methanol-water mixture. Other 

representations remain the same as in the Figure 4.1. 
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Table 4.3:  Solvent parameters used in the calculation for alcohol-water mixtures (a) 

 
Solvent Dipole moment (Debye) Diameter (Å) 

Water 
Methanol 
Ethanol 
Tert-Butanol 
Acetonitrile(ACN) 
Dimethylsulfoxide(DMSO) 

1.85 
1.70 
1.69 
1.66 
3.50 
4.10 

2.80 
4.24 
4.78 
5.58 
4.50 
5.30 

 
(a) Diameters of Li+, Na+, Cs+ and C4 ions are taken as 1.24, 1.96, 3.52 and 10 Å, 
respectively. 
 
 

Several interesting features are to be noted from the upper panel of Fig. 4.2. First, 

BornF  for Li+ at all methanol compositions is the largest of all the ions studied here.  

 

This is also the prediction of earlier works in pure solvents15 and equal-sized dipolar 

mixtures.16 Also, BornF calculated here for all ions in pure liquid (water or alcohol) 

matches exactly with those from Chan et al.15 Second, the nonideality in BornF  

decreases as the size of the ion is increased. Note the peak ratio in BornFΔ  between Li+ 

and C4 ~ 4. This indicates that the larger solvent species is increasingly 

accommodated as the ion size is increased. In Fig. 4.3 we have shown the Born free 

energy of solvation ( BornF ) and excess Born free energy ( BornFΔ ) for Li+, Na+, Cs+ and 

C4 ions in ethanol-water mixture. The general features of  BornF  very similar to 

methanol-water mixture except the extent of nonidealty is more for Na+ ion than for 

Li+ at all the compositions. The situation becomes interesting for TBA-water 

mixtures, shown in Fig. 4.4. Here, the nonideality in BornF  for Li+ to Na+ shows a slope 

opposite to that found in aqueous methanol and ethanol solutions. The positive values 

of BornFΔ  for Li+ to Na+ in TBA-water mixture indicates that due to larger size TBA 

molecules cannot be packed around these smaller ions as efficiently as methanol or 

ethanol. This constraint is however partially lifted when the ion becomes larger. 

Consequently, BornFΔ  for Cs+ and C4 shows the similar mole fraction dependence as 

found in methanol-water and ethanol-water mixtures.  This completes the non-ideal 

behavior on both sides of the ideal curve. It is interesting to note that even-though  
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Figure 4.3: Upper panel: Comparison of Born free energy of solvation BornF  for Li+ 

(circles), Na+ (triangles), Cs+ (squares) and C4 (inverted triangles) ions as a function of mole 

fraction of ethanol (xEtOH) in ethanol-water mixture. Middle panel: Comparison of excess 

Born free energy of solvation BornFΔ for Li+ (circles) and Na+ (triangles) ions as a function of 

mole fraction of ethanol (xEtOH) in ethanol-water mixture. Bottom panel: Comparison of 

excess Born free energy of solvation BornFΔ  for Cs+ (squares) and C4 (inverted triangles) ions 

as a function of mole fraction of ethanol (xEtOH)  in ethanol-water mixture.  

 

TBA is larger in size than methanol, BornFΔ  for Cs+ and C4 is smaller in TBA-water 

mixture than that in methanol-water mixture. This is a manifestation of the role of 

ion-solvent size ratio in determining the extent of nonideality. As we would see later, 

the solvent structure in asymmetric binary polar mixture around larger ions is  
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Figure 4.4: Upper panel: Comparison of Born free energy of solvation BornF  for Li+ 

(circles), Na+ (triangles), Cs+ (squares) and C4 (inverted triangles) ions as a function of mole 

fraction of tertiary butanol (xTBA) in tertiary butanol-water (TBA-water) mixture. Middle 

panel: Comparison of excess Born free energy of solvation BornFΔ for Li+ (circles) and Na+ 

(triangles) ions as a function of mole fraction of TBA (xTBA) in TBA-water mixture. Bottom 

panel: Comparison of excess Born free energy of solvation BornFΔ  for Cs+ (squares) and C4 

(inverted triangles) ions as a function of mole fraction of TBA (xTBA) in TBA-water mixture.  

 

relatively more ‘homogeneous’ than around smaller ions. Since dipole moments of 

these alcohols are almost the same2, this result indicates the important roles being 

played by ion-solvent and solvent-solvent size ratios in governing the solvent 

structure around an ion in binary mixtures.  
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The solvent size ratio dependence of  FBorn and BornFΔ  are shown in Fig. 4.5 where 

Born free energy of solvation and excess Born free energy of solvation are calculated 

for C4 in aqueous methanol, ethanol and TBA solutions. As expected, the Born free 

energy of solvation (FBorn, upper panel) is the largest in aqueous methanol solutions at 

all compositions. Also, the peak in excess Born free energy ( BornFΔ , lower panel) is 

the highest in aqueous methanol solution.  Note that the peak in BornFΔ  is shifting 

towards lower alcohol mole fraction as the chain length of the alcohol increases. It is 

believed that because the perturbation on water structure becomes stronger as the 

alkyl chain length increases, leading to an appreciable modification in water structure 

at lower alcohol concentration for TBA than for methanol.65-67 The fact that the 

solvent-solvent size ratio plays an important role in these complex mixtures is indeed 

manifested in Fig. 4.5. Moreover, these peaks are occurring between 0.3 – 0.2 mole 

fractions of alcohols studied here. In addition, the peak size depends on the size of the 

alcohol as well as that of the ion dissolved (see Fig. 4.2 also). All these observations 

are similar to what have been observed earlier when partial molal heat of solution for 

several crystalline salts was measured in alcohol-water mixtures.65-67  Studies of these 

systems using techniques such as sound velocity measurements,23-25 Fourier transform 

near-infrared spectroscopy,26 light34-35 and x-ray scattering,36-37 neutron scattering and 

diffraction,29-32,38-41 dielectric relaxation,27,43 and computer simulation45-50 also 

revealed similar non-monotonic alcohol mole fraction dependence in the respective 

properties which was subsequently explained in terms of modification of the three 

dimensional hydrogen-bonded network structure of water by successive addition of 

alcohols.  Since specific interaction such as hydrogen bonding between water and 

alcohol molecules are absent in the present theory, the emergence of these peaks and 

tuning of them with alcohol size is purely originating from the interactions between 

the ion and solvents of different types and also between solvent molecules of the same 

and different types. These interactions are essentially size mediated electrostatic 

attraction or repulsion giving rise to solvent structural rearrangement. Therefore, the 

size mediated structural rearrangement is an inherent property of an asymmetric 

binary mixture, the magnitude of which is accentuated or attenuated by the presence 

of specific interactions.  
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Figure 4.5: Comparison of Born free energy of solvation BornF  (upper panel) and excess 

Born free energy of solvation BornFΔ  (lower panel) for C4 ion in methanol-water (circles), 

ethanol-water (triangles) and TBA-water mixture (squares). For further discussion, see text. 

 

 

 

4.3.1.3 Born Energy in DMSO-Acetonitrile Mixtures  

Fig. 4.6 shows the mole fraction dependence of Born free energy of solvation, 

BornF and excess Born free energy of solvation, BornFΔ  in DMSO-acetonitrile mixture 

for two ions of very different diameters, Li+ and C4. Also shown are the results for 

ethanol-water mixture in order to make a comparison between the two different kinds  
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Figure 4.6: Born free energy solvation BornF  (upper panel) and excess Born free of 

solvation BornFΔ  (lower panel) for Li+ (circles) and C4 (triangles) ions as a function of mole 

fraction of second (larger) component (x2) in DMSO-acetonitrile (solid symbols) and ethanol-

water (open symbols) mixtures. 

 

of mixture.  The Born free energy of solvation, BornF (upper panel) indicates different 

mole fraction dependence in ethanol-water and DMSO-acetonitrile mixtures. The 

insensitivity (or very weak dependence) of  BornF  on DMSO mole fraction in DMSO-

acetonitrile mixture (filled symbols) is a manifestation of competition between 

packing and electrostatic interactions. The dipole moment of DMSO is little larger 

than that of acetonitrile and hence ion-dipole interaction would favor DMSO more in 

number in the first solvation shell of an ion. However, packing constraint (repulsion) 

would disfavor DMSO as its size is slightly larger than acetonitrile. Therefore, a 
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delicate balance between these two interactions renders the mole fraction dependence 

of BornF  a very weak one. Note also that even in ethanol-water mixture (open 

symbols), the mole fraction dependence in BornF for C4 (triangles) is very weak. This 

indicates that C4 being large in size can accommodate larger solvent molecules more 

favorably than smaller ions, resulting much less concentration fluctuations in the 

nearest neighbor solvent arrangements.63 

 

The lower panel of Fig. 4.6 shows the mole fraction dependence of the excess Born 

free energy of solvation, BornFΔ  for Li+ and C4 in DMSO-acetonitrile and ethanol-

water mixtures. Note that the slope of BornFΔ  for DMSO-acetonitrile mixture is 

opposite to that found in ethanol-water mixtures. Similar results have also been found 

for smaller ions in TBA-water mixtures (see Fig. 4.4). The positive values of 

BornFΔ clearly indicates that DMSO molecules around a small ion such as Li+ is 

increasingly disfavored due to larger size. This is indeed a manifestation of 

dominance of repulsive interactions in determining the solvation structure around a 

solvated ion. Another important aspect of this figure (lower panel) is that the absolute 

magnitude of BornFΔ  is 4 times less for Li+ in DMSO-acetonitrile mixture than that in 

ethanol-water solution. This indicates that the solvent size ratio indeed plays a crucial 

role in determining the extent of nonideality in binary mixtures. Also, the position of 

the extremum of DMSO-acetonitrile curve occurs at almost 50:50 composition 

whereas that for ethanol-water occurs at ~0.3 mole fraction of ethanol. This further 

proves that the solvent size ratio not only determines the extent of nonideality in Born 

free energy of solvation in binary mixtures, but determines also the location of the 

extremum on the mole fraction axis.62-63 

 

4.3.2 Partial Polarization Densities 

4.3.2.1 Partial Polarization Densities in Alcohol-Water Mixtures 

      Since the Born free energy of solvation (FBorn) is obtained from the partial solvent 

polarization densities (see Eqs. (4.50), (4.66) and (4.67)), one needs to look at these  
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Figure 4.7: Partial polarization of water Pwater(r) and TBA PTBA(r) (both scaled 

by 3
wB RTk ) around Li+ and C4 ions as a function of distance r (scaled by water diameter 

Rw) from the centre of the ion at three different TBA mole fractions. In all the panels 

calculated data for TBA mole fractions 0.11, 0.30 and 0.50 are represented by solid, dashed 

and dotted-dash lines, respectively. For discussion, see text. 

 

quantities for molecular level understanding of the non-ideality shown by FBorn  in 

these alcohol-water mixtures. Here, we present the numerical results on the partial 

solvent polarization densities around Li+ and C4 in aqueous alcohol mixtures at three  
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Figure 4.8: Excess partial polarization of water (upper panel)  )( peakPwaterΔ and TBA 

)( peakPTBAΔ calculated from the peak values of respective partial polarizations  for Li+ 

(circles), Na+ (triangles), Cs+ (squares) and C4 (inverted triangles) ions as a function of mole 

fraction of TBA (xTBA) in TBA-water mixture. The following expression has been used to 

calculate )( peakPiΔ (i=water or TBA): )0,(),(),( 222 =−=Δ xpeakPxpeakPxpeakP iii  

)]0,()1,([ 222 =−=− xpeakPxpeakPx ii . 

 

different compositions. Fig.4.7 shows the partial solvent polarization for Li+ and C4 

dissolved in TBA-water mixture at three different TBA mole fractions. Note that the 

peak height in all cases is larger for smaller ions. This is consistent with the findings 

of Chan et al.15 in pure solvents. It is evident from this figure that the polarization 

density due to water around these ions is greater at all compositions than that due to 

TBA. Also, the water polarization density is decreased as the mole fraction of the 
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alcohol is gradually increased. Interestingly, even in 50:50 alcohol-water mixture, the 

peak in polarization density due to water is approximately 3 times larger than that due 

to TBA. This means that water is preferred over TBA molecules in the first solvation 

shells around these ions. This is the molecular origin of the non-ideality in Born 

energy of solvation, discussed already in connection with Figs. 4.2, 4.3 and 4.4.  In 

fact, as shown in Fig. 4.8, the excess partial polarization densities ( PΔ (peak)) 

calculated from the mole fraction dependent peak values in TBA-water mixtures also 

show non-ideality similar to what has been observed for the excess Born free energy 

of solvation (see Figs. 4.2, 4.3, 4.4 and 4.5). Also, PΔ (peak) and BornFΔ  exhibit 

similar ion-size dependence. 
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 Figure 4.9: Partial polarization densities of water Pwater(r) and ethanol PEtOH(r) (both scaled 

by 3
wB RTk ) around Li+ and C4 ions as a function of distance r (scaled by water diameter 

Rw) from the centre of the ion at 0.10 (solid line), 0.50 (short dashed line) and 0.70 (dotted 

dashed line) mole fractions of ethanol in ethanol-water mixtures. For discussion, see text. 
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Figure 4.10: Partial polarization densities of acetonitrile PACN(r) and dimethylsulfoxide 

PDMSO(r) (both scaled by 3
ACNB RTk ) around Li+ and C4 ions as a function of distance r 

(scaled by water diameter RACN) from the centre of the ion at 0.10 (solid line), 0.50 (short 

dashed line) and 0.70 (dotted dashed line) mole fractions of DMSO in DMSO-ACN mixtures.  

 

 

Fig. 4.9 shows the partial solvent polarization densities in ethanol-water mixtures at 

0.10, 0.50 and 0.70 mole fractions of ethanol. While the upper panels describe the partial 

polarization densities of water around Li+ and C4, those of ethanol are shown in the 

lower panels. Note that at the lowest ethanol mole fraction (0.10), both the first and 

second solvation shells are clearly visible whereas the second solvation shell 

disappears with the increase in alcohol mole fraction in the mixture. As expected, the 

peak value of the water polarization density decreases with the increase in ethanol 

concentration and vice-versa.   
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4.3.2.2 Partial Polarization Densities in DMSO-Acetonitrile Mixtures  

The results for DMSO-acetonitrile mixtures are shown in Fig. 4.10. The polarization 

peaks for both ACN and DMSO decrease as one increases the DMSO concentration 

(Fig. 4.11). In addition, the second solvation shell is well formed for most of the cases 

in this mixture. This is in contrast to what has been observed in alcohol-water 

mixtures. This is again due to the larger size of the solvent components constituting 

the binary mixtures.  
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Figure 4.11: Upper panels: Comparison of peak values of partial polarization of water 

)( peakPwater and ethanol )( peakPEtOH  for Li+ (open circles) and C4 (open triangles) ions as 

a function of mole fraction x2 of ethanol in ethanol-water mixture. Lower panel: Comparison 

of peak values partial polarization of acetonitrile )( peakPACN and dimethylsulfoxide 

)( peakPDMSO  for Li+ (solid circles) and C4 (solid triangles) ions as a function of mole 

fraction x2 of DMSO in ACN-DMSO mixture. 
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We compare in Fig. 4.11 the mole fraction dependence of partial polarization peaks in 

associating (alcohol-water) and non-associating (DMSO-acetonitrile) solvent 

mixtures. The decrease or increase of partial solvent polarization peak is non-linear 

for ethanol-water mixtures, the extent of non-linearity being very weak for C4. As 

discussed earlier here and elsewhere,62-63 the nonlinearity is a manifestation of 

preferential solvation and hence this explains the microscopic origin of the strong 

nonideality observed for smaller ions in ethanol-water and other alcohol-water 

mixtures. In DMSO-acetonitrile mixture, however, the peaks of the partial solvent 

polarization densities decrease or increase almost linearly for both the ions showing a 

very weak preferential solvation. This is again due to the comparable sizes and dipole 

moments of DMSO and acetonitrile molecules. 

 

4.3.3 Comparison with Experiments 

As already discussed, the present theory treats the binary solvent components as 

dipoles embedded on hard spheres which is very different from the real situation. For 

example, alcohol-water solutions are known to exhibit anomalous behavior due to 

hydrophobic interaction and specific interaction (H-bonding) between the alcohol and 

water molecules. In such solutions where an intricate balance between hydrophobic 

hydration and H-bonding interaction dictates the solution property, the success of a 

simple theory like MSA in predicting the experimental behavior is somewhat fraught 

with danger. However, non-specific interactions such as size-mediated and coulomb 

(ion-dipole and dipole-dipole) interactions could still play a significant role in 

determining the solvent structure around an ion in these complex mixtures. Therefore, 

there is always a possibility that for some ion-solvent and solvent-solvent 

combinations, the non-specific interactions rather than the specific and hydrophobic 

interactions would dominate the preferential solvation. For those cases one would 

expect a qualitative agreement between the present theory and the relevant 

experimental results. We will now discuss several of those cases. 

 

Fig. 4.12 depicts the comparison of nonideality in Born free energy of solvation in 

three different binary mixtures, namely, methanol-water, ethanol-water and DMSO-

acetonitrile solutions.   While   the   excess   free energy of solvation obtained from  



 110

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

xEtOH

Water + MeOH

Water + EtOH

Li+

Na+

Cs+

C4

xMeOH

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2

-1

0

1

2

3

4

TheoryExperiment

xEtOH

xMeOH

- Δ
G

(k
J/

m
ol

e)

-Δ
F B

or
n(

kJ
/m

ol
e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

xDMSO xDMSO

ACN + DMSO

 
Figure 4.12: Comparison between the calculated excess Born free energy of solvation 

( BornFΔ− ) and experimental excess free energy of solvation ( GΔ− ) for Li+ (circles), Na+ 

(triangles), Cs+ (squares) and C4 (inverted triangles) ions in binary mixtures of methanol-

water (upper panels), ethanol-water (middle panels) and DMSO-acetonitrile (bottom panel). 

These excess functions are shown as a function of mole fraction of one of the components in 

the mixture. The experimental data are represented by the solid symbols while the predictions 

from the extended MSA theory are shown by the open symbols. 
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experiments68 for different ions in these solvent mixtures are shown in the left panels 

of Fig. 4.12, the theoretical results are presented in the right panels. We would like to 

mention here that one should not directly compare the experimental results with the 

theory as the present theory calculates only the electrostatic part of the free energy of 

solvation. It is also known that for alkali metal ions, the entropic contribution to the 

solvation free energy is negligible.69 Several aspects are to be noted in this figure. 

First, for a large ion such as tetra-alkyl quaternary ammonium ion (C4) in methanol-

water mixture, the calculated excess Born free energy of solvation ( BornFΔ− ) shows a 

slope qualitatively similar to that in experimentally observed mole fraction dependent 

excess free energy of solvation ( GΔ− ). For alkali metal ions, however, the slope is 

opposite to that found in experiments. This is probably because the solution structure 

in presence of a big organic ion is more homogeneous where the specific and 

hydrophobic interactions play a secondary role. Recent neutron diffraction studies of 

ternary mixtures composed of cyclohexene, TBA and water in 2:6:1 ratio suggest that 

the microscopic heterogeneity is much weaker in ternary solutions than in binary 

mixtures40 and hence the solution is less biphasic where microclustering of water 

molecules is not supported. Similar modifications may also take place in methanol-

water mixtures in presence of tertra-alkyl ammonium ion (C4). Since the solvent 

structure around a dissolved ion in such cases is likely to be governed by the size 

mediated and electrostatic interactions, the MSA may be able to predict the qualitative 

behavior of the experimentally observed mole fraction dependence of free energy of 

solvation. However, the microscopic heterogeneity in solution structure is likely to 

remain unchanged in presence of smaller ions and hence the theory is in poor 

agreement with experiments in such cases. Even though the excess Born free energy 

of solvation for alkali metal ions such as Na+ and Cs+ in methanol-water solutions 

show nonideality in a direction opposite to that found in experiments, the 

experimentally observed ion size dependence is well captured by the present theory. 

 

Next we discuss the mole fraction dependence of excess Born free energy of solvation 

( BornFΔ− ) for these ions and compare them with the experimental excess free energy 

of solvation ( GΔ− ) in ethanol-water mixtures. Interestingly, in water-ethanol 

mixtures (middle panels) the nonideality in BornFΔ−  for all the ions is qualitatively 
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similar to that found in experimentally obtained GΔ− . From the arguments given for 

methanol-water solutions, BornFΔ−  for C4 in ethanol-water mixture is expected to 

show qualitative agreement with the corresponding experimental GΔ− . However, the 

reasons for the qualitative agreement between theory and experiments for alkali metal 

ions (Li+, Na+ and Cs+) are not obvious to us. It might be that since BornFΔ−  in the 

present theory is dictated by a combination of ion-size, solvent-solvent size ratio, 

dipole moments and solution density (obtained from experiments), the calculation 

explores the right parameter space which leads to such a qualitative agreement with 

experiment.  It could also be that such an agreement is fortuitous if one keeps in mind 

the complexity of the interactions involved in these systems and also the simplified 

model that the present theory is using to study them. Therefore, one should use 

sophisticated theories such as those proposed by Hirata and co-workers49-50 in order 

explore how subtle differences in the hydrophobic and H-bonding interactions and 

their effects on microscopic solution structure lead to a different behavior of excess 

free energy of solvation for alkali metal ions in methanol-water and ethanol-water 

solutions.  Similar comparisons for TBA-water systems could not be made as the 

experimental data at all TBA mole fractions are not available. However, for larger 

ions such as Cs+ and C4, the available data on free energy of solvation is showing the 

same qualitative trend as predicted by the present theory.  

 

Let us now focus our attention on similar studies in a non-associating binary liquid 

mixture where both the solvent components are polar yet not involved in H-bonding 

interaction either between molecules of same species or between different species. We 

have chosen DMSO-acetonitrile mixture as an example of the above type. In addition, 

the molecular diameter and dipole moment of DMSO are slightly larger (4.1 D and 

5.3 Å) than those of acetonitrile (3.5 D and 4.5 Å).  Therefore, a competition between 

the size mediated and electrostatic interactions would lead to a non-ideality much less 

pronounced compared to the systems composed of molecules with dissymmetric size 

and dipole moments. This is indeed the scenario as shown by the calculated BornFΔ−  

in the bottom panel of Fig. 4.12.  However, the predicted non-ideality is not only 

growing in a direction opposite to that found in experiments68(b) (data available only 

for Na+) but differs in magnitude also. This is probably due to the specific ion-solvent 

interaction between the dissolved ion and DMSO molecule (through the lone pair of 
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electrons). Effects of such specific ion-solvent interactions have also been found 

while studying ion mobility in DMSO-acetonitrile mixtures. Such ion-solvent specific 

interaction may drastically alter the solution structure around a dissolved ion which 

cannot be accounted for by the extended MSA approach. This is definitely a limitation 

of the present theory. 

 

4.4  Conclusion 

In this work we have found that the excess Born free energy of solvation depends 

both on the ion size and size disparity between solvent molecules in a binary mixture. 

This is in addition to the contribution arising out of difference in dipole moments.  

Note here that ion solvation in an asymmetric dipolar mixture has already been 

studied by several authors.5,64 In these studies,5,64 however, the MSA was not solved 

by consistently incorporating the ion size. Instead, solvent intra and intermolecular 

correlations were obtained from the solutions of dipolar MSA. Systematic 

incorporation of ion size is crucial because the polarization structure at the surface of 

the ion is very different from that at two or three molecular diameter away. The 

present work therefore reveals that not only the size of the solvent molecules but also 

the size of the ion plays an important role in determining the extent of nonideality.  

 

When the present theory is applied to binary mixtures with solvent parameters 

representing water and several mono-hydroxyl alcohols, the excess Born free energy 

of solvation shows a non-monotonic mole fraction dependence. The peak in the 

excess Born free energy of solvation has been found to decrease with the increase in 

the size of the alcohol molecule. Also, the peaks are occurring at lower mole fraction 

of alcohol as the alcohol size becomes larger. These results are surprisingly similar to 

what have been found earlier in several experimental studies. In the present work the 

non-monotonic alcohol mole fraction dependence of the excess Born free energy of 

solvation arises due to a novel interplay among size-mediated electrostatic 

interactions between ion, alcohol and water molecules, and between alcohol-alcohol, 

alcohol-water and water-water molecules. The calculated microscopic partial 

polarization densities around a dissolved ion indicate the molecular origin of the 

preferential solvation and explain the nonideality in excess Born free energy of 

solvation in terms of intra and inter-molecular correlations. These results also indicate 
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that for a system of equal size and dipole moments, the nonideality will be either very 

weak or non-existent in the absence of any specific interactions. Dimethyl sulfoxide 

(DMSO) and acetonitrile molecules are both very close in size and dipole moments 

and our studies with DMSO-acetonitrile mixtures indeed show a very weak 

nonideality.63 However, experimental data on mobility for small alkali ions in DMSO-

acetonitrile mixtures70 indicate the presence of a donor-acceptor bond between ion 

and a DMSO molecule, probably through the interaction of the ion with the lone-pair 

of electrons on the oxygen atom of a DMSO molecule. Therefore, the experimental 

data with small alkali ions in this mixture are expected to show a stronger nonideality 

than predicted by the present theory.  Formation of donor-acceptor type ion-solvent 

complex is unfavorable with large symmetrical organic ions due to steric reasons and 

hence the theoretical predictions for these ions would be closer to experimental 

results.  

 

It is to be noted here that since the present work is based upon the mean spherical 

approximation (MSA), the effects of shape of the molecules and specific interactions 

among them have not been incorporated. Therefore, the correlations derived from the 

present work are qualitative in nature. Needless to say, a full non-linear treatment 

with a systematic incorporation of the shape and specific interaction effects will lead 

to a quantitative description of solution structure in binary dipolar mixtures. Integral 

equation theory coupled with RISM approach by Hirata and co-workers50-51 has been 

found to be successful in describing qualitatively many of the experimental data in 

water-alcohol systems discussed here. However, this approach is non-trivial and 

numerically involved. The present approach, on the other hand, is based on the simple 

MSA framework, which is simple and analytically tractable, yet capable of describing 

qualitatively the nonideality in alcohol-water mixtures in terms of microscopic solvent 

structure. 

  
 

 

 

 

 



 115

Appendix  
  The values of ][bbij ≡  can be obtained by the following equation 
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iμ  is the chemical potential of ith species in the mixture which is given by  
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Chapter 5 

 
Dipolar Solvation Dynamics in Dipolar 

Room Temperature Ionic Liquids 

 
5.1 Introduction     

The presence of Coulomb interactions have rendered ionic liquids several unique 

solvent properties, such as, low vapour pressure, considerable polarity, wide liquid 

range, enhanced thermal stability and miscibility with other solvents.1-2 These 

properties have made RTILs better and environment-friendly reaction media in 

chemical industry for synthesis, separation, catalysis and a host of other applications. 

That is why RTILs are now called as ‘Green Solvents’. Since chemical reactions 

usually involve charge transfer and/or redistribution, the stabilization of various 

intermediates and products is intimately connected to the time scale at which the 

surrounding solvent molecules reorganize.  Understanding the time scale of solvent 

reorganization in such reaction media may therefore be crucially important for 

designing a solvent for carrying out a specific reaction for a desired product. The last 

few years have witnessed intense activity towards understanding the solvation 

dynamics of photo-excited dyes in room temperature ionic liquids (RTIL).3-39 

 

Solvation dynamics experiments provide the solvent reorganization time scale via 

monitoring the time dependent shift in the fluorescence emission spectrum of a laser-

excited dye molecule.40-42 The time dependent progress of solvation is expressed in 

terms of solvation response function,40-42 [ ] [ ])()0()()()( ∞−∞−= νννν ttS , where 

)(tν denotes some measure of the time dependent frequency (usually, peak or the first 

moment) of the fluorescence emission spectrum of the laser excited dye dissolved in 

that medium. )0(ν  is the emission frequency of the time zero spectrum (at a time 

when the vibrational relaxation in the excited probe molecule is complete but the 

solvent relaxation has not begun yet)  and )(∞ν  represents the emission frequency 



 120

after the solvent relaxation is complete. For solvents with fast dynamics, )(∞ν  is 

expected to be the same as that obtained from the steady state emission spectrum of 

the same dye molecule in that solvent.40 Note that S(t) is normalized such that it 

decays from unity at 0=t  to zero at ∞=t , and a time integration of S(t) produces the 

average solvation time, sτ .    

 

Recently, solvation dynamics in a number of RTILs have been investigated and the 

results from these studies can be summarized as follows:3-16, 22-25  

 

(i) For imidazolium and pyrrolidinium ionic liquids, S(t) shows biphasic 

decay where  a fast component with time constant in the range of 100 – 

700 fs accounts for approximately 20% of the total decay followed by a 

much slower component with time constant spanning over a few 

picoseconds to several nanoseconds. 

(ii) While the fast component originates from the inertial motion of the ions, 

the structural relaxation in RTIL is responsible for the slow component. 

(iii) The slow component can be fitted either to  a stretched exponential or to a 

bi-exponential functions of time. 

(iv) For phosphonium and several ammonium ionic liquids, the biphasic decay 

is absent where a stretched exponential with one time constant could 

sufficiently describe the full decay dynamics. 

(v) For a given RTIL, the average solvation time, sτ , shows a considerable 

probe dependence. 

      

ven-though the above results are quite general, there exist several issues pertaining to 

the solvation dynamics in ionic liquids which are currently under debate and 

discussion. For example, fluorescence upconversion measurements in two 

imidazolium ionic liquids25 have indicated a smaller (~10%) fast component with a 

much slower time constant (600 – 900 fs) than those reported in earlier studies. These 

studies25 have further suggested that several factors such as the internal 

conformational dynamics of the probe molecule and its distribution between polar and 

non-polar environments in the RTIL could enhance the initial fast decay of the solvent  
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Figure 5.1: Room Temperature Ionic Liquids studied here. 
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response function as well as shorten the fast time constant. Interestingly, simulation 

studies of solvation dynamics in imidazolium ionic liquids predict larger amplitude of  

the fast component (30-75%) with a much shorter time constant (70 – 200 fs) than 

what have been observed in experiments.27-29, 33-36 Recently, solvation dynamics in 

ethylammonium nitrate have been calculated using the dielectric relaxation data of the 

solvent and a good agreement between the calculated results and experiments found.23 

However, recent continuum model calculations for several imidazolium ionic liquids 

indicate  disagreement between theory (continuum model) and experiments.10 Note, 

however, that these attempts neither included the ion-ion and ion-solute static 

correlations nor could use the high resolution dielectric relaxation data for 

imidazolium liquids which are made available only recently.43 One therefore wonders 

whether, just like observed earlier for dipolar solvents,40-42 the success of such simple 

models for RTILs is also determined critically by the complete measurement of the 

dielectric relaxation and systematic inclusion of the relevant static correlations. 

Moreover, recent optical heterodyne-detected Raman-induced Kerr effect 

spectroscopic (OHD-RIKES) studies with several RTILs have revealed the presence 

of low frequency (~20 – 150 cm-1) intermolecular librational modes.44-48 It would 

therefore be also interesting to investigate whether and to what extent these librational 

modes couple to the solvation dynamics and influences the initial part of the polar 

solvation energy relaxation in ionic liquids. This question becomes relevant as the low 

frequency intermolecular solvent modes have been found earlier to strongly influence 

the solvation dynamics and ionic mobility in amides and substituted amides.49-50  

 

In this chapter, we investigate the solvation dynamics of three different probe 

molecules in several imidazolium ionic liquids for which the dielectric relaxation 

have been measured most recently by Stoppa et al.43. These ionic liquids, shown in 

Fig. 5.1, are 1-N-butyl-3-N-methylimidazolium tetrafluoroborate, [bmim][BF4], and 

its hexafluorophosphate, [bmim][PF6], and dicyanamide, [bmim][DCA], and 1-N-

hexyl-3-N-methylimidazolium tetrafluoroborate, [hmim][BF4]. The most important 

aspect of this dielectric relaxation study43 is that these data cover the dielectric 

dispersion due to intermolecular librations at terahertz (THz) frequencies in ionic 

liquids. Subsequently, the complete dielectric relaxation data for these RTILs have 

been used as input in an extended molecular hydrodynamic theory (EMHT) 

developed earlier for studying solvation dynamics and ionic mobility in polar 
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liquids.41-42 The solute parameters (such as dipole moment, diameter etc.) used in the 

calculation are those of the following probe molecules: coumarin 153 (C153), 4-

aminophthalimide (4-AP) and trans-4-dimethylamino-4’-cyanostilbene (DCS). In 

addition, we have approximated the solvation process of a laser-excited probe 

molecule in RTIL as that in an effective dipolar medium,51 dipole moment of which is 

determined by the experimentally measured static dielectric constant.43 The static  

correlations (solute-solvent and solvent-solvent) are then assumed to be given by the 

mean spherical approximation (MSA) theory with corrections both at the short and the 

long wavelength limits.52 Note, however, that the inaccurate description of the static 

correlations at molecular length scales by the MSA theory may not vitiate the 

qualitative understanding of solvation dynamics in these liquids as the polar solvation 

energy relaxation has been found to be dominated by the collective response of the 

system.41 Subsequently, we have investigated the effects of cation libration44-48 on 

solvation energy relaxation in imidazolium ionic liquids by sequentially switching off 

the fast components in the experimentally measured43 dielectric relaxation data.  

 

The main results of the chapter are as follows. For all the ionic liquids studied here, 

the calculated decay of the solvation response function (S(t)) is found to be biphasic 

with the slower component being non-exponential with time. It is also noticed that 

multi-exponential functions cannot adequately describe the calculated S(t).The time 

constants associated with the calculated decay of S(t) are found to be in the  range of 

sub-picosecond and a few hundreds of picosecond, with  β (stretching exponent) 

values (0.4 – 0.5) close to those observed in experiments. In addition, the theoretically 

predicted time constants are in semi-quantitative agreement with those in experiments 

and simulation studies. The average solvation times ( sτ ) are, however, found to be 

smaller by a factor of ~2 than those in experiments, indicating that a slower 

mechanism in addition to those captured in the dielectric relaxation studies might be 

present in the system which has not been incorporated in the present study. The 

freezing of the translational motion of the effective solvent dipoles does not lead to 

any further slowing down of the dynamics as the translational motion in these high 

viscous solvents is already severely restricted. The theoretical results presented here 

also do not reveal any probe dependence as the parameters used in the calculation for 

describing the different probes vary slightly from each other. The present study also 
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reports dipolar solvation dynamics in two other room temperature ionic liquids, 

[bmim][DCA] and [hmim][BF4], which should be tested against experiments. 

 

 The remaining part of the chapter is arranged as follows: In section 5.2 we give an 

overview of the theoretical formulation and discuss about the computational details. 

In section 5.3 we present the numerical results and compare with experimental data 

wherever possible. We study the probe dependence of solvation dynamics in these 

ionic liquids in section 5.4.  The chapter then ends with concluding remarks in section 

5.5. 

  

5.2 Computational Details 

The same EMHT41-42,53-54 described in chapter 2 has been used for studying the 

solvation dynamics for a dipolar solute in the aforementioned RTILs. In the EMHT 

the time dependent solvation energy for a dipolar solute is obtained from the density 

functional theory.41-42 Although the use of the density functional theory for ionic 

liquids may be inappropriate and should therefore be debated, the presence of  dipolar 

interactions (in addition to the ionic interactions) in these liquids may allow one to 

follow the same approach as devised for normal dipolar solvents.41-42  Consequently, 

the time dependent fluctuating solvation energy for a dipolar solute (due to dipole-

dipole interaction) in such an effectively dipolar medium becomes41,51 

 

         ( ) ( ) ( )tcddTktE dsdBsol Ω,ΩΩ ,,;, rrΩrrΩr ′′′′′−=Δ ∫ δρ, , ,                             (5.1)  

 

where ( )tEsol ,,ΩrΔ  is the fluctuating solvation energy of a  dipolar solute located at 

position r with orientation Ω at a time t. ( )',';, ΩrΩrsdc   denotes the direct correlation 

function between the solute dipole and  an effective  solvent dipole at positions r and 

r’ with orientations Ω and  Ω’ , respectively. Then, a tedious but straightforward 

algebra leads to the following expression for the normalized solvation response 

function51,5
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In the above equation (Eq. 5.2) ( )kcsd
10  and ( )kcsd

11  represent the longitudinal and 

transverse components of the wavenumber (k) dependent  direct correlation  function 

between the dipolar solute and an effective solvent dipole and has been calculated 

using mean spherical approximation (MSA) theory.52 )(kLε  and )(kTε  are the 

longitudinal and the transverse components of wavenumber dependent dielectric 

constant. These functions have  been calculated by using the MSA model for a pure 

solvent with proper corrections at both k→0 and k→∞ limits ),(10 zkΣ   and ),(11 zkΣ  

are the longitudinal (l=1, m=0) and  transverse ( l = 1, m = 1) components of the 

wavenumber and frequency (z) dependent generalized rate of solvent orientational 

polarization density relaxation, ( ),( zklmΣ ).41,53-54 

 

The expressions involved for the calculation of wavenumber and frequency dependent 

generalized rate of solvent polarization relaxation, ),( zklmΣ , are given in chapter 2 

(section 2.3.1). It contains two dissipative kernels – the rotational kernel (ΓR (k,z)) and 

the translational kernel (ΓT(k,z)).41,53-54 The translational dissipative kernel, ΓT(k,z),   

has been calculated by using the isotropic dynamic structure factor of the effective 

dipolar medium while the rotational kernel ΓR (k,z) at k→0 limit is directly related to 

the experimentally determined frequency dependent dielectric function, )(zε  of 

RTILs, measured recently by   Stoppa et al.  These authors43 have performed 

dielectric relaxation experiment over the frequency range of THz 3GHz 1.0 − .  The 

measured dielectric relaxation data have been expressed as follows43 
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Table 5.1: Dielectric relaxation parameters (from Ref. 43) used in the calculation of    
 Solvation dynamics in RTILs  
 
     [bmim][PF6] [bmim][BF4] [bmim][DCA] [hmim][BF4]

    ε0         11.8        12.2         11.3       10.1 
    S1         7.4        8.94         6.42       6.32 
    τ1(ps)         1406        1140         63.0       1322 
    α1         0         0         0.33       0 
    β1         0.37        0.21         1       0.27 
    S2         0.45        0.37         0.75       0.18 
    τ2(ps)         38.8        73.1         2.09       42.6 
    S3         0.81        1.15         0.94       1.46 
    τ3(ps)          1.26        0.389         0.240       0.331 
    S4         1.38        0.70         1.04       0.69 
    ν4 = πΩ 24  (THz)         2.77        2.85         3.68       2.4 
    γ4 = πΓ 24  (THz)         7.77        4.85         6.37       2.47 
    ε∞         2.10        1.06         2.13       1.47 
 
 

Table 5.2: Solute and solvent parameters used in the calculation of solvation dynamics in   
 RTILs at 298 K 
 
    RTIL  Diameter 

    (Å) 
Dipole-moment 
   (Debye)(e) 

   Density 
   (g/cc) 

Viscosity 
   (Poise) 

[bmim][PF6](a)      7.78       4.4      1.37     3.10 
[bmim][BF4]      7.20       3.8      1.21     1.54 
[bmim][DCA]      7.48       3.8      1.06     0.33 
[hmim][BF4]      7.72       3.9      1.15     2.40 
DCS(b)    7.8     20      -     - 
C153(c)      7.8       14        -       - 
4-AP(d)      6.2       13.6        -       - 
 
(a) The value of the dipole moment for [bmim+] shown here (obtained from static dielectric 

constant) is very close to value reported in the following work: H. Jin, B. O’Hare, J. Dong, S. 

Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi and M. Maroncelli, J. Phys. Chem. B  

112, 81 (2008). 

(b) From the work: S. Arzhantsev, K. A. Zachariasse and M. Maroncelli, J. Phys. Chem. A 

110, 3454 (2006). 

(c) From Ref. 40 

(d) From the work: D. E. Wetzler, C. Chesta, R. Fernandez-Prini and P. F. Aramendia, J. 

Phys. Chem. A 106, 2390 (2002).  

(e) The values of the dipole moment of the solutes (C153, DCS and 4-AP) are those in the 

excited state. 
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where  ∞ε  is the limiting value of )(zε  at high frequency, jτ  the relaxation time for  the  

jS  dispersion.  The parameters 1α  and 1β  determine the shape of a relaxation spectrum. 

4Ω  and 4Γ  denote respectively the resonance frequency and the damping constant for the 

contribution at the THz frequency that has been described using the damped harmonic 

oscillator model.43  The dielectric relaxation fit parameters obtained by Stoppa et al.43 are 

given in Table 5.1. Note that these data indicate that fastest modes present in the RTILs 

such as librations and intermolecular vibrations are responsible for dispersion amplitudes, 

S2, S3 and S4.  Therefore, availability of the full dielectric relaxation data allows us to 

investigate the effects of librational motion on solvation dynamics in room temperature 

ionic liquids which has not been done before. 

 

The other solute (probe) and solvent parameters necessary for the calculation are 

summarized in Table 5.2, where solvent densities and viscosities are taken from 

experiments,1 dipole moments calculated from the experimentally measured dielectric 

constants and diameters from the van der Waal’s space filling model. 

 

5.3 Results & Discussion 

In this section we present numerical results on dipolar solvation dynamics of the 

following systems: (i) DCS in [bmim][PF6], (ii) DCS in [bmim][BF4], (iii) C153 in 

[bmim][PF6] and (iv) 4-AP in [bmim][PF6]. For all these probe – RTIL systems, the 

theoretical results have been compared with the available experimental data wherever 

possible. Dipolar solvation dynamics have been predicted for two other systems also, 

DCS in [bmim][DCA] and DCS in [hmim][BF4], for which experimental results are 

not available yet. The solvation response function, S(t), calculated by using the Eq. 

5.2 then fitted to the following  function 

 
                                ])/(exp[]/exp[)( 2211

βττ tatatS −+−=                                  (5.4) 

 

where 1a  and 2a  are the amplitudes of the biphasic components constituting the total 

decay of  normalized S(t) so that 121 =+ aa . Analytical integration of Eq. 5.4 then 
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leads to the following expression for the average solvation time, 

β
β
τ

ττ 122
11

a
as += . 

 

5.3.1 DCS in [bmim][PF6] 

In Fig. 5.2 we show the decay of the solvation response function for DCS in 

[bmim][PF6] calculated by using Eq. 5.2 (solid lines) and compare with the 

experimental results (open circles) of Arzhantsev and coworkers.8 It is evident from 

Fig. 5.2 that, as observed in experiments,8 the calculated decay of the solvation 

response function is indeed biphasic with two distinctly different time constants. In 

the same figure we also show the results of our investigation regarding the 

contributions of the librational and intermolecular vibrational modes to the solvation 

dynamics in ionic liquids.  It is clear from this figure that calculation by considering 

all four of  the experimentally measured dielectric dispersions in this solvent leads to 

the fastest decay (curve 4) of the solvation response function, whereas incorporation 

of only the slowest dispersion results a decay much slower  (curve 1) than what has 

been observed in experiments.8 Systematic inclusion of two other dispersions in 

addition to the slowest one then makes the decay sequentially faster (curves 2 and 3) 

and closer to the experiments. This observation, therefore, indicates that, like in amide 

and substituted amides,49-50 the libration modes couple to the solvation dynamics in 

[bmim][PF6], and the fast component of the polar solvation energy relaxation 

originates from such coupling.    

 

As the calculated solvation response function is very sensitive to the quality of the 

dielectric relaxation data, the present theory provides an opportunity to investigate the 

effects of uncertainty associated with the estimates of various dispersion amplitudes43 

obtained through fit to the experimental dielectric relaxation data. The results of one 

such calculation for [bmim][PF6] is also presented in the same figure (dashed line) 

where only the first three dispersions are considered along with S4 = 0.68 and ∞ε = 2.1 

+ 0.7 = 2.8.  In the inset we show the decay of the solvation response function up to 5 

ps where the calculated  initial fast component of the solvation energy relaxation 

appears to agree quantitatively with that in experiments.8 The parameters required to 

fit the calculated decays by using Eq. 5.4 are summarized in Table 5.3 and an  
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 Figure 5.2: Comparison between the predicted decay (solid lines) of the solvation response 

function, )(tS and that obtained from experiments (circles) for DCS in [bmim][PF6]. The tags 

on the calculated curves represent the following: (i) ‘4’  - calculation with all the four 

dispersion steps reported by the experimental dielectric relaxation data by Stoppa et al.43, (ii) 

‘3’ – calculation with the first three dispersion steps (the fastest step, S4 is switched off), (iii) 

‘2’ – calculation with first two dispersion steps (S3 and S4 are switched off) and (iv) ‘1’ – 

calculation with only the slowest (S1) dispersion.  The short dashed line represents the 

theoretical prediction when the magnitude of fastest relaxation step (S4) in dielectric 

relaxation (DR) data is tuned such that S4=0.68 and 8.2=∞ε . Inset: Curves ‘3’, ‘4’ and the 

one obtained with the tuned DR data are presented in a smaller time window in order to show 

the comparison with experimental results at early times. For decay fit parameters see Table 

5.3. 

  

inspection to these data reveal that modification of ∞ε and leaving out of the fastest 

dispersion leads not only the fast and slow time constants ( 1τ and 2τ , respectively) but 

the stretching exponent ( β ) also to a good agreement with those obtained from 

experimental studies.8 However, the calculated 1τ   is moderately faster (212 fs) with 

slightly larger  amplitude (24%) than those in experiments (330 fs and 19%).8 These 
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parameters along with ~30% larger β  value (0.41 versus 0.31) give rise to average 

solvation time ( sτ ) 300 ps, a value approximately 3 times less than that (1000 ps) in 

experiments.8 This disagreement is not unexpected given the fact that no attempt has 

been made in the present calculation to include the structural heterogeneity of the 

medium. Note also that the calculated 1τ  is agreeing well with that found in recent 

simulation studies of solvation dynamics in this ionic liquid.27 

 

Another feature to be noted in the theoretical study of solvation dynamics of DCS in 

[bmim][PF6] is  that calculations with any number of dispersions leads to non-

exponential and biphasic decay of the solvation response function with  time constants 

lying between ~100 – 900 fs and ~100-300 ps with β  values in the range of 0.38 – 

0.41. Interestingly, an initial fast time scale of 600 – 900 fs with ~10 % amplitude, 

which are comparable to those reported in a recent fluorescence up-conversion study 

of C153 in two other imidazolium based ionic liquids,25  is obtained only after 

switching off the two higher frequency librational contributions in [bmim][PF6].  

Even though this switching off leads to higher values for β , the calculated values are 

still at least 1.5 times smaller than those reported in the above up-conversion 

experiments.25 It is, however, to be recognized here that the side chains attached to the 

imidazolium unit and the counter ions are different in the ionic liquids used in the up-

conversion study25 and hence in the absence of complete dielectric relaxation data the 

present calculation cannot suggest anything about the degree of correctness of the up-

conversion data in these ionic liquids.25 

  
5.3.2 DCS in [bmim][BF4] 

In Fig.5.3 we show the numerical results on solvation dynamics of DCS in another 

RTIL, [bmim][BF4] and compared with the relevant experimental data.8 While the 

solid lines represent the theoretically predicted solvation response functions obtained 

after sequential addition of dielectric dispersion steps, the circles represent the 

experimental results of  Arzhantsev and coworkers.8 As observed in [bmim][PF6], the 

calculated solvation response function with any number of dispersions exhibits 

biphasic decay, even though the time constants become increasingly slower as the fast 

components in the dielectric relaxation data are switched off systematically (see Table 
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Figure 5.3: Comparison between the predicted decay (solid lines) of the solvation response 

function, )(tS and that obtained from experiments (circles) for DCS in [bmim][BF4]. The tags 

on the calculated curves represent the same protocol of the calculations as described in Fig. 

5.2. The dashed line represents the calculation by considering only the slowest step (S1) of the 

DR data but with a tuning to make ∞= εε1 = 4.66. Here again the inset shows the comparison 

between the theory and experiments at early times. The representations remain the same as in 

Fig. 5.2. The decay fit parameters are summarized in Table 5.3. 

 

5.3). Note in Fig. 5.3 that, unlike in [bmim][PF6], solvation dynamics in [bmim][BF4] 

appears not to couple to the fast modes of the solvent.  Moreover, use of only the 

slowest dispersion step in the dielectric relaxation data does not make the decay of the 

solvation response function as slow as that observed in experiments.  The fit 

parameters summarized in Table 5.3 indicate that calculation even with only the 

slowest dispersion gives rise to the fast and slow time constants respectively four 

times and twice as small as those found in experiments, although the calculated 
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amplitudes are comparable. On the other hand, the total magnitude of spectral shift 

measured in the time resolved experiments8 does not indicate missing of any 

component faster than what has been detected. Then, the observed discrepancy 

between the theory and experiments could be due to either the enhanced heterogeneity 

in [bmim][BF4], or, a small over-estimation  of the dispersion amplitudes in the 

dielectric relaxation data of [bmim][BF4].43 Interestingly, the 1β  values reported by 

the dielectric relaxation experiments43 seem to suggest that [bmim][BF4] is more 

heterogeneous than [bmim][PF6], which is, however, opposite to the trend found in 

solvation dynamics experiments in these two liquids.8  

 

Subsequently, we have performed a test calculation by using only the slowest 

dispersion with its amplitude decreased by 1.4, leaving the relaxation time unchanged. 

That is, 0ε (12.2) 1ε→ (4.66) with the Cole-Davidson relaxation time, CDτ = 1140 ps 

and the shape parameter, 1β = 0.21.43 The solvation response function thus calculated 

is shown by the dashed line in Fig. 5.3, which is agreeing semi-quantitatively with the 

experiments.6 In order to show the agreement at the initial time, we compare the 

results in a smaller time-window (upto 5 ps) in the inset. These results and the fit 

parameters given in Table 5.3 therefore suggests that a little tuning  in the dielectric 

dispersion data is probably warranted for the agreement between theory and 

experiments on solvation dynamics in [[bmim][BF4]. We of course mention that the 

observed decoupling of the calculated solvation dynamics from the librational and 

intermolecular vibrational modes in ionic liquids may originate from the fact that the 

present theory completely neglects the structural heterogeneity that characterizes 

these media. Therefore, the observed agreement upon tuning the dielectric relaxation 

data may not reveal the totally correct mechanism of the solvation dynamics in these 

room temperature ionic liquids. 

  

5.3.3 C153 in [bmim][PF6] 

Next we present the results on solvation dynamics for C153 probe in [bmim][PF6]. 

The calculated decays of the solvation response function with this probe in this ionic 

liquid is shown in Fig. 5.4 and compared with the relevant experimental results.6  It is 

evident from the figure that the experimental decay6 is much slower than the theory  
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Figure 5.4: Comparison between the calculated and experimentally obtained decays of the 

solvation response function for C153 in [bmim][PF6].  The representations remain the same in 

Fig. 5.2. Note here that a substantial fraction of the early dynamics has been missed in the 

experiment. Fit parameters are provided in Table 5.3. 

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

t(ps)

4AP in [bmim][PF6]

Experiment

4
3

2 1

 
Figure 5.5: Solvation dynamics of 4-AP in [bmim][PF6]. The representations remain the 

same as in Fig. 5.2. Note that ~60% of the total decay has been missed in the experiment. The 

fit parameters are given in Table 5.3. For discussion, see text. 
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even when the calculation is performed using only the slowest dispersion. 

Experimental studies with C153 have indicated that ~30%   of the initial fast 

dynamics is missed due to the limited time resolution employed in the experiments.6 It 

is seen that when experiments are able to capture the complete solvation dynamics,8 a 

fast time constant of ~300 fs with ~20% amplitude is obtained and the rest is carried 

by a component with a time constant of 100-150 ps. The present calculation also 

reveals similar time scales in this ionic liquid, albeit with a little tuning in the 

dielectric relaxation data. Also, simulation studies27 of C153 in [bmim][PF6] suggests 

the presence of a fast component of amplitude ~10-20% with a time constant of ~200 

fs. Furthermore, consideration of only the collective ( →σk 0) mode of the solvent 

polarization relaxation obtained after using the tuned (as described in Fig. 5.3)  

dielectric relaxation data43 can generate the biphasic decay with two time constants, 

one in the range of ~200 fs  and the other ~50 ps, and a β  value of 0.33 (see Table 

5.3). Therefore, the existence of a fast component of amplitude ~10-20% with time 

constant in the range of 200 – 300 fs associated with the solvation dynamics of 

dipolar probes in imidazolium ionic liquids is well supported by the present 

calculations.  

 

5.3.4 4-AP in [bmim][PF6] 

The calculated decays of the solvation response function for 4-AP probe in 

[bmim][PF6]  is shown in Fig. 5.5 and compared with the relevant experimental 

results.5  The  fit parameters are given in Table 5.3. It is clear from the figure that like 

for C153 the experimental decay5 is much slower than the theory even when the 

calculation is performed using only the slowest dispersion. The calculated decay is 

biphasic for all the dispersion steps in DR data whereas the experiment data is best 

fitted with only a single stretched exponential. The time zero analysis shows that the 

missing component for 4-AP is  ~60% which is larger than that for C153. However, 

the above studies indicate that one would expect an additional fast component when 

experiment is performed with better resolution8.    

 

5.3.5 DCS in [bmim][DCA] 
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The calculated decays of solvation response function for DCS probe in a relatively 

low viscous ionic liquid, [bmim][DCA],  is shown in Fig. 5.6 and the decay fit 

parameters are summarized in Table 5.3. Note that there is no experimental data 

available for this system for comparison. The calculated dynamics in [bmim][DCA] is 

predicted to be 4-5 times faster than its hexafluorophosphate analogue. However, the 

solvation dynamics in [bmim][BF4] is found to be comparable with that in 

[bmim][DCA]. It is to be noted that [bmim][DCA] is different from the other three 

ionic liquids in the sense that it possesses the lowest density, smallest viscosity and 

fastest rotational relaxation times, along with a non-zero value for 1α and the highest 

value for 1β . Therefore, the time scale of solvation dynamics in [bmim][DCA] is 

expected to be different and this is also reflected in the present calculation.  However, 

the calculated average solvation times in these RTILs do not scale linearly with the 

solvent viscosity which probably a manifestation of the strong structural heterogeneity 

that exists in these ionic liquids. Another interesting point that emerges from the 

predicted solvation dynamics in all these four ionic liquid is that the value of β (the 

stretching exponent in Eq. 5.4) becomes successively smaller as the fast components 

in the dielectric relaxation data are sequentially incorporated in the calculation (Table 

5.3). This is in corroboration with the observations of Arzhantsev and coworkers8 who 

found that complete detection of faster dynamics led to the reduction in β  values 

obtained earlier6 with broader time resolution. 

 

5.3.6 DCS in [hmim][ BF4]  

The predicted decay of solvation dynamic of solvation response function for DCS 

probe in [hmim][ BF4] is shown in Fig. 5.7. There is no experimental data available 

yet for this system also. Here also the calculated decay is biphasic for all the 

dispersion steps. Note that solvation dynamics in this ionic liquid is 2 times slower 

than that in [bmim][DCA].  

 

5.4 Probe Dependence of Solvation Dynamics in RTILs 

Next we turn our attention to the probe dependence of solvation dynamics in ionic 

liquids. Experimental studies of solvation dynamics in [bmim][PF6] with different 

probe molecules such as DCS, C153 and  4-AP have revealed that the average  
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Figure 5.6: The decay of the solvation response function, S(t), for DCS in [bmim][DCA]. 

Representations remain the same as in Fig. 5.2. 
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Figure 5.7: The decay of the solvation response function, S(t), for DCS in 

[hmim][BF4]. Representations remain the same as in Fig. 5.2.  
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Table 5.3: Fit parameters required to describe the calculated and experimental S(t)         

    System Type of Study a1 τ1 
(ps) 

a2 τ2 
(ps) 

β < sτ > 
(ns) 

 
 
 
 
 

DCS  in 
[bmim][PF6] 

 
 
 

Theory 
1 
2 
3 
4 

Tuned DR data with 4 
dispersion steps 

 
4 dispersion steps but 

only →σk 0 mode 
Experiment (Ref. 8) 

 
0.09 
0.07 
0.21 
0.40 

 
0.24 

 
 0.31 

 
0.19 

 
0.78 
0.90 
0.82 
0.13 

 
0.21 

 
 0.19 

 
0.33 

 
0.91 
0.93 
0.79 
0.60 

 
0.76 

 
 0.69 

 
0.81 

 
308 
224 
197 
87 
 

126 
 

 32 
 

140 

 
0.52 
0.47 
0.46 
0.38 

 
0.41 

 
 0.33 

 
0.31 

 
0.51 
0.47 
0.4 
0.2 

 
0.3 

 
 0.13 

 
1.0 

 
 
 

DCS  in 
[bmim][BF4] 

 

Theory 
1 
2 
3 
4 

Tuned DR data 
with the slowest 
dispersion step 

Experiment (Ref. 8) 

 
0.17 
0.15 
0.35 
0.51 

 
0.15 

 
0.19 

 
0.09 
0.08 
0.13 
0.07 

 
0.10 

 
0.32 

 
0.83 
0.85 
0.65 
0.49 

 
0.85 

 
0.81 

 
56 
43 
23 
16 
 

92 
 
130 

 
0.38 
0.37 
0.33 
0.31 

 
0.41 

 
0.41 

 
0.18 
0.16 
0.1 
0.06 

 
0.23 

 
0.34 

 
 
 

C153 in 
[bmim][PF6] 

 

Theory 
1 
2 
3 
4 

Experiment (Ref. 6) 

 
0.10  
0.07 
0.21 
0.39 

- 

 
0.79 
0.94 
0.83 
0.13 

- 

 
0.90 
0.93 
0.79 
0.61 
1.00 

 
310 
224 
195 
101 
500 

 
0.52 
0.46 
0.46 
0.39 
0.49 

 
0.52 
0.49 
0.37 
0.22 
1.0 

 
 

4AP in 
[bmim][PF6] 

Theory 
1 
2 
3 
4 

Experiment (Ref. 5) 

 
0.11 
0.07 
0.22 
0.39 

- 

 
0.81 
0.91 
0.81 
0.13 

- 

 
0.89 
0.93 
0.78 
0.61 
1.00 

 
312 
225 
193 
96 

1150 

 
0.52 
0.47 
0.46 
0.39 
0.65 

 
0.52 
0.47 
0.35 
0.20 
1.6 

 
DCS  in 

[bmim][DCA] 
 

Theory 
1 
2 
3 
4 

 
0.33 
0.27 
0.15 
0.31 

 
24.6 
11.6 
0.61 
0.08 

 
0.67 
0.73 
0.85 
0.69 

 
81 
49 
20 
11 

 
0.45 
0.41 
0.35 
0.32 

 
0.14 
0.11 
0.08 
0.05 

 
DCS  in 

[hmim][BF4] 
 

Theory 
1 
2 
3 
4 

 
0.13 
0.11 
0.44 
0.58 

 
0.22 
0.19 
0.18 
0.09 

 
0.87 
0.89 
0.56 
0.42 

 
142 
119 
88 
66 

 
0.45 
0.43 
0.42 
0.39 

 
0.30 
0.29 
0.15 
0.1 
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solvation time varies by approximately a factor of 2 among these probes, a result 

obtained from experimental data where a significant portion of the early dynamics has 

been missed.6 The present theory does not predict such a probe dependence for 

[bmim][PF6] as the average solvation times calculated with  a given number of 

dispersion steps (see Table 5.3) remain largely  insensitive to the identity of these 

probes. As the amplitudes and time constants associated with the biphasic decay of 

the calculated solvation response function are not too different due to small variations 

in the probe parameters (Table 5.2), the average solvation time exhibits almost 

complete independence from the nature of the probe used in this study. Similar probe 

dependence has also been predicted for solvation dynamics in dipolar solvents at 

ambient condition because of the dominance of the collective ( →σk 0) mode of the 

solvent polarization relaxation.41 

 

5.5 Conclusion 

Solvation dynamics of different dipolar probes in four imidazolium cation based ionic 

liquids have been studied using a molecular hydrodynamic theory where the most 

recent dielectric relaxation data43 have been used as input. The present theory models 

these ionic liquids as effective dipolar media whose dipole moments are obtained 

from the experimentally measured static dielectric constants. While the static probe-

solvent and solvent-solvent correlations required for the calculation have been 

obtained from the MSA with corrections at both the short and long wavelength limits, 

the present theory does not include the structural heterogeneity that originates from 

the relatively longer-ranged ion-ion interactions in these liquids. The solution 

heterogeneity is also reflected in several studies38-39,48,56 that report formation of polar 

and non-polar regions through tail aggregation. In heterogeneous systems, the 

molecular correlation is known to extend over longer range57 (beyond a couple of 

molecular diameters) which, in turn, makes the structural relaxation sluggish. The use 

of dipolar MSA in such systems would always underestimate the static correlations 

because such simple models are useful for homogeneous liquids.  Since ion-solvent 

and solvent-solvent static correlations are important inputs in the present theory, any 

underestimation of these correlations would make the polar solvation energy 

relaxation faster than what should be in the presence of proper enhanced correlations. 

This is probably one of the reasons that the theoretically predicted solvation response 
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functions are uniformly faster than those observed in experiments. Nonetheless, it is 

interesting to see that even with a simplified model, the present theory can predict the 

experimentally observed biphasic dynamics where the calculated time scales are in 

semi-quantitative agreement with those from experiments and simulation studies. The 

reason for this success of this effective medium calculation is probably due to the 

dominance of the long wavelength ( →σk 0) polarization fluctuation and the use of 

the complete experimental dielectric relaxation data. The success of the present 

molecular theory in predicting solvation dynamics and ionic mobility in polar solvents 

have also been traced earlier to the above factors. Hence, we believe and also 

predicted already by Petrich and coworkers27 that the use of complete dielectric 

relaxation data can lead to the understanding of the essential features of the polar 

solvation dynamics in ionic liquids. We have also presented theoretical results on 

solvation dynamics in two ionic liquids for which experimental data are not available 

yet. These predictions should be tested against experiments. 
 

We would like to mention here that the discrepancy between theory and experiment 

can also come from the inaccuracy58 in the dielectric data of Stoppa et al.43 For 

instance, when a Cole-Davidson relaxation is used for the slowest mode, one obtains 

an unexpected increase of static permittivity with temperature.58 If a Cole-Cole 

relaxation is used, the expected decrease of static permittivity with increasing 

temperature is found. Therefore, the use of these models in fitting the dielectric 

relaxation data of these liquids requires further work as the experimental accuracy 

below 1 GHz is too limited (here the dominating conductivity contribution swamps 

the "dielectric" signal).58 

 

The present calculations also show that the solvent fast modes such as libration and 

intermolecular vibrations may or may not couple completely to the polar solvation 

dynamics in the room temperature ionic liquids studied here. We would also like to 

mention here that the present theory will not be able to predict the solvation dynamics 

in ionic liquids where the frequency dependent dielectric function, )(zε  would be 

close to )(∞ε  for all frequencies. In such systems, the solvation dynamics would be 

closer to non-polar solvation dynamics where the translational motions, rather than 

the ion rotations, would account for the relaxation time scales.59-60 One therefore 
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requires two different theories, where the different interactions would be consistently 

incorporated while properly calculating the static correlations in order to investigate 

the solvation dynamics in these inherently heterogeneous systems. That would 

definitely be a challenging task. 
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Chapter 6 

 
Solvation Dynamics in Room Temperature 

Ionic Liquids: Role of Dipole-dipole and 

Dipole-ion Interactions 

 
6.1 Introduction 

In the previous chapter, we used a molecular hydrodynamic theory to study the 

solvation dynamics of a dipolar solute probe in a few imidazolium ionic liquids 

where, along with the solute-solvent and solvent-solvent static correlations, the most 

recent dielectric relaxation data1 were used as inputs. The ionic liquid was modelled 

as an effective dipolar medium and the calculated decay was found to be biphasic 

with a strongly non-exponential slow component. Even-though the consideration of 

dipole-dipole interactions alone in the above work could successfully predict the 

biphasic dynamics observed experimentally for several imidazolium ionic liquids, all 

the calculated time constants were found to be uniformly smaller than the 

experimental2 ones. Also, the non-exponential component accompanied a stretching 

exponent ( β ) whose value ranged between 0.3 – 0.5.2 Note these β  values are much 

smaller than what was found in solvation dynamics studies of fused inorganic salts at 

elevated temperatures.3-4 The emergence of the stretching exponent was attributed to 

the microscopic heterogeneity in RTILs due to domain formation via the interactions 

among the alkyl groups attached to the cations.5-11 Consequently, the calculated 

average solvation times ( ∫
∞

=
0

)(tdtSsτ ) were much smaller than the experimental 

values. This definitely indicates that the solvation dynamics in these ionic liquids is 

not completely controlled by the rate of the orientational polarization density 

relaxation as envisaged in our earlier work (chapter 5) but a slower relaxation channel 

is also operative through which a certain fraction of solvation energy relaxes. It is 

therefore natural to link the ion density relaxation, arising due to dipole-ion 
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interaction between solute dipole and solvent charge, to the relatively slower decay of 

the experimentally measured solvation response function.  

 

In addition, when a dye molecule of relatively shorter excited state life time such as 

DCS (life time ~1.5 ns) was used,2  a dynamic Stokes shift of ~4000 cm-1 was 

detected which is  twice than that observed with probes such as  C153 and 4-AP12-13 

(life time ~6 ns). This immediately leads to the following questions:  

 

   (a)  What is the source of such a large dynamical Stokes shift in these weakly polar     

         ionic liquids whose average dielectric constants ( 0ε ) lie in the range of 10–15 ? 

   (b) What is the correct magnitude of dynamical Stokes shift for a given ionic liquid           

         that   originates  purely   from   the  time   dependent  rearrangement  of  solvent              

         molecules around an excited dipolar solute ?  

 

In time resolved experiments12-17 ( ) ( )∞−νν 0 , also known as dynamic Stokes’ shift 

( tνΔ ), represents the total amount of spectral shift induced by the solvent 

rearrangement, magnitude of which  is determined by the difference between the 

interactions of the excited solute with the initial ( 0=t ) and final ( ∞=t ) solvent 

configurations. The solvation response function describes how the normalized tνΔ  

decays from unity to zero as )(tν approaches )(∞ν  with time. It is then expected that 

while the nature of the solute-solvent interaction determines the magnitude of tνΔ , the 

coupling of solute-solvent interaction with the inherent solvent dynamics dictates the 

time evolution of the Stokes’ shift. In many room temperature ionic liquids (RTIL) 

where at least one of the constituent ions possesses permanent dipole moment, the 

solute-solvent interactions will have two major components. For a dipolar solute, 

these are dipolar solute – dipolar ion (dipole-dipole) and dipolar solute-ion (dipole-

ion) interactions. Solute-solute interactions are usually ignored because in 

experiments solutes are used as ‘probes’ at very low concentrations (~10-5 – 10-7 

mol/lit).2,17-18 Conventional time-resolved measurements, however, cannot separate 

out these contributions. Since the solvent reorganization energy is an important input 

for the calculation of electron transfer rate using the Marcus theory, this becomes a 

relevant issue in understanding electron transfer reaction19 in this class of liquids. 
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Therefore, the detail investigation of different roles played by these interactions in 

determining the solvation time scales as well as tνΔ  in these liquids is crucial.   

  

Recently, conductivity data for several dipolar ionic liquids have been analyzed by 

using the much celebrated Nernst-Einstein equation and provides useful information 

regarding the degree of dissociation of these molten salts in liquid state at room 

temperature.20-22 This motivates us to model dipolar ionic liquid as an electrolyte 

solution in a solvent of appropriate average polarity ( 0ε ).  The dipolar ionic liquids 

that have been considered are 1-N-butyl-3-N-methylimidazolium tetrafluoroborate, 

[bmim][BF4], and its hexafluorophosphate, [bmim][PF6], and dicyanamide, 

[bmim][DCA], and 1-N-hexyl-3-N-methylimidazolium tetrafluoroborate, 

[hmim][BF4]. The choice of these liquids stems from the fact that nearly accurate 

dielectric relaxation data over a broad frequency range for these liquids are recently 

made available1. In addition, complete measurement of solvation dynamics of several 

of these liquids have been performed in recent times which facilitates a direct 

comparison with the predictions from the present theory.2  

 

As before, we use the classical density functional theory23-24 (DFT) to obtain the 

expression for the total time dependent solvation energy for a solute due to ions and 

dipoles that surrounds it in solution. This treatment leads to the total time dependent 

solvation energy as a sum of contributions coming from the dipole-dipole and dipole-

ion interactions. Subsequently, an expression for the total solvation energy auto-

correlation function is derived assuming that the fluctuating time scales of dipole and 

ion polarization densities are completely decoupled from each other. This is true for 

electrolyte solutions in fast solvents where the relaxation of dipolar part is completely 

decoupled from that of ionic contribution. We use the mean spherical approximation 

(MSA) model to calculate the wavenumber ( k ) dependent solute-solvent static 

correlations whereas the wavenumber dependent solute-ion static correlations have 

been approximated by its mean field value. The solvent–solvent dipolar static 

correlations are also obtained from the MSA model after correcting both at 0→k  

and ∞→k limits. The ion-ion static correlations have been obtained from the works 

of Attard et al. While the solvent orientational dynamic structure factor has been 

calculated from the dielectric relaxation data as done previously for pure dipolar 
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solvents,23-26 the ion dynamic structure facture has been obtained by considering only 

the diffusive dynamics. Note here that consideration of the full dynamics that includes 

the inertial translational motion of the ions did not induce any change in the calculated 

time scales for these highly viscous liquids.     

 

In this chapter, we describe a molecular theory that includes both dipole-dipole and 

dipole-ion interactions which provides a more general framework for studying 

solvation dynamics in imidazolium and phosphonium ionic liquids. The above dipolar 

RTILs are again considered in this work in order to study the effects of dipole-ion 

interaction. The phosphonium ionic liquids we study here are 

trihexyl(tetradecyl)phosphonium chloride, [P(C6)3C14][Cl], bromide, [P(C6)3C14][Br] 

and tetrafluoroborate [P(C6)3C14][BF4]. We treat these phosphonium ionic liquids as 

‘non-dipolar’ ones since none of the ions constituting these liquids possesses 

permanent dipole moment. This distinguishes these liquids from the ‘dipolar’ 

imidazolium RTILs considered in this study in which at least one of the ions contains 

permanent dipole moment. This distinction may not be strictly correct as the 

alkylphosphonium cations can possess non-zero dipole moment due to the asymmetry 

in its structure.18 Unfortunately, nothing is known at this moment about the magnitude 

of the dipole moment characterizing these asymmetric ions as there is no study on this 

aspect of these phosphonium ionic liquids. It may, however, be logical to consider 

that  asymmetry-induced dipole moment of the alkylphosphonium cation would be  

small compared to those in imidazolium ions, and, as a result, these phosphonium 

ionic liquids might be much less polar than the imidazolium ones.  Treating the 

phosphonium liquids as ‘non-dipolar’ ones is based purely on this consideration and 

therefore the present study rather loosely classifies the imidazolium and phosphonium 

liquids into dipolar and non-dipolar categories.  Suitable quantum chemical 

calculations and other relevant study should be carried out for phosphonium liquids in 

order to make a rigorous comparison of the polarity aspects with those of imidazolium 

ones so that the justifiability of categorizing these liquids into two different groups 

can be checked more rigorously. It may, however, be justifiable to say that 

dynamically this means while the orientational relaxation would govern the dynamics 

of one class of liquids (imidazolium ones), it would play much less important role for 

the other ones (phosphonium liquids). In addition to the classification (polar and non-

dipolar ones) in such a manner, another advantage of studying these liquids emanates 
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from the possibility of checking the predictive power of the present theoretical 

formulation by comparing the calculations directly with the experiments as dynamic 

Stokes’ shift have been measured for most of these liquids.2,18 Also, this would help 

testing the validity of the dynamic continuum model theories27-28 more rigorously.  

 

The rest of the chapter is organized as follows. We describe the molecular theory in 

the next section where computational details are also discussed.  The relevant part of 

the derivation is given in Appendix III. Numerical results are presented in section 6.3 

where comparisons with relevant experimental data are also made. We then conclude 

the chapter in section 6.4.  

 

6.2 The Molecular Theory 

The microscopic theory presented here is a generalization of the molecular 

hydrodynamic theory developed earlier23-24 for studying solvation dynamics in 

conventional polar solvents and is based on the following simple model. The dipolar 

RTILs are assumed to be electrolyte solutions29 of polar solvents where the dipolar 

interactions among the ions possessing permanent dipole moments produce the 

effective average dielectric constants30 ( 0ε ). The non-dipolar RTILs are then the 

2
0 Dn=ε ( Dn  being the refractive index) limit of this model. Note that such a limit 

ensures very large inverse Debye screening length (κ ) and makes the interaction 

length scale much shorter than that expected on the basis of longer-ranged charge-

charge interaction.31 As we shall see later, this has an important consequence on the 

solvation times scales in non-dipolar ionic liquids. For both types of liquids, 

electrolytes are characterized by effective ionic concentrations which could be 

determined from the ratios of the experimentally measured ionic conductivities and 

diffusivities.20-21 Therefore, these ionic liquids consist of cations, anions and ion-pairs. 

A solute dissolved in such a medium then interacts with all these species and both the 

Stokes’ shift and the solvation energy (of the solute) derive contributions from each of 

these different types of interactions.  
 

6.2.1 Total Solvation Response Function, )(tSE  
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With the above model we now briefly discuss the derivation of the expression for the 

time dependent solvation energy of a dipolar solute dissolved in a dipolar RTIL. For 

such a solute-RTIL combination, the main contributors are the dipole-dipole 

interaction between the solute and dipolar ionic species, and the dipole-ion interaction 

between the solute and the constituent ions. For dipolar ionic liquids, the interaction 

contribution between the solute and ion-pair (IP) is not treated separately because the 

concentration of ion-pair is much smaller than the dipolar and ionic species 

constituting the ionic liquid.20-21 However, the effects of solute-IP interaction are 

indirectly incorporated via experimental dielectric relaxation data as inputs to the 

subsequent calculations.  As done earlier,23-24,32-33 the position (r ), orientation (Ω ) 

and time (t) dependent total solvation energy for a mobile dipolar solute is obtained 

by using the density functional theory (see Appendix III), 
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where ),,( ts Ωrρ  is the position (r), orientation (Ω ) and time (t) dependent number 

density of the dissolved solute. In the above equation while ),;,( ΩrΩr ′′sdc  denotes 

the direct correlation function (DCF) between a dipolar solute at position r with 

orientation Ω  and a dipolar ion at r′ with Ω′ , );,( rΩr ′αsc  represents that between a 

dipolar solute placed at r with orientation Ω  and a charged species (ion) located at 

r′ . α denotes the type of ions (cation and anion) that are interacting with the solute. 

The fluctuations in dipolar density ( dδρ ) and ion density ( αδn ) from the respective 

equilibrium bulk values are then defined as follows: πρρδρ 4/),(),( 0
ddd −= ΩrΩr  

and 0)()( αααδ nnn −= rr . Note that the time dependence in the fluctuating total 

solvation energy, ),,( tEtotal ΩrΔ , is introduced through the temporal modulation of 

the dipolar and ion density fluctuations,23  ),,( td Ωrδρ and ),( tn rαδ . Since the linear 

response approximation allows one to consider the fluctuation in densities either from 

the initial ( )0=t  or final ( )∞=t  state, the time dependent fluctuating total solvation 

energy ),,( tEtotal ΩrΔ may be expressed as Eq. 6.1. It is to be mentioned here that the 
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solute-solvent and solvent-solvent direct correlation functions are assumed to remain 

unchanged with time even-though ),,( td Ωrδρ and ),( tn rαδ  evolves with time.23 This 

is equivalent to the approximation that the presence of the solute and its excitation 

induces a very weak perturbation to the liquid structure and hence both the statics and 

dynamics of the solution can be assumed to be that of the pure solvent (linear 

response). Therefore, within the mean field approximation, Eq. 6.1 is exact to the first 

order of the density fluctuation.23 Note that the fluctuating solvation energy, 

),,( tEtotal ΩrΔ  consists of two separate fluctuating contributions: one due to the 

dipole-dipole interaction, ),,( tEsd ΩrΔ    and other due to the dipole-ion interaction, 

),,( tEsi ΩrΔ . This decomposition of total solvation energy is a direct consequence of 

assumption that the total solvation energy can be expressed as a sum of dipole-dipole 

and ion-dipole interaction contributions. An evidence of sort in favour of such simple 

summation can be found in dynamic Stokes’ shift measurements of electrolyte 

solutions where the ‘ionic’ part was found to add to the ‘pure’ dipolar solvent 

component.34  

 

The expression for the fluctuating total solvation energy (fluctuation from the 

equilibrium value) auto-correlation function can then be written as follows,  

 

>′ΔΔ<+>′ΔΔ>=<′ΔΔ< )()()()()()( tEtEtEtEtEtE sisdsdsdtotaltotal  

                                          >′ΔΔ<+>′ΔΔ<+ )()()()( tEtEtEtE sisisdsi  

                                     >′ΔΔ<+>′ΔΔ=< )()()()( tEtEtEtE sisisdsd                   (6.2) 

 

where the  position and orientation dependencies of the variables are not shown 

explicitly in order to avoid crowding. The second equality in Eq. 6.2 follows from the 

approximation that the fluctuation of dipole density ( dδρ ) is much faster than that of 

ion density ( αδn ) and hence the fluctuating dipole-dipole and ion-dipole contributions 

get uncorrelated from each other in the following manner:  

)()()()( tEtEtEtE sisdsisd ′ΔΔ>=′ΔΔ<  and 

)()()()( tEtEtEtE sdsisdsi ′ΔΔ>=′ΔΔ< . Now each of the sxEΔ  (x being d or i) 

terms become zero as it represents averaging of a randomly fluctuating (from  
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equilibrium value) quantity. As a result, both the cross-correlation terms, 

>′ΔΔ< )()( tEtE sisd  and >′ΔΔ< )()( tEtE sdsi , vanish and the   total solvation energy 

auto-correlation function simply becomes a sum of dipole-dipole and dipole-ion 

contributions.  However, a note of caution here is that such a clear separation between 

the dipole-dipole and ion-dipole contributions may not exist in real systems and they 

may, in fact, be even strongly correlated.  Fortunately, dynamic Stokes’ shift 

measurements in electrolyte solutions34 of several ‘fast’ polar solvents have indicated 

a considerable degree of decoupling between the ion dynamics and dipolar solvent 

dynamics where the observed separation is explained in terms of adiabatic adjustment 

of the faster dipolar solvent molecules to the fluctuations due to ion locations.  Such a 

mechanism of decoupling between the dipole-dipole and ion-dipole contributions can 

be equally applicable here as the ionic liquids are modelled as electrolyte solutions in 

the present work.  

 

The time dependence of the solvation energy relaxation is then followed in terms of 

the normalized solvation energy auto-correlation function (see Appendix III),  
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where )(tSsx  terms (x = d or i) denote the normalized solvation energy auto-

correlation functions due to solute–medium dipolar interaction  ( )(tSsd ) and  solute–

ion (dipole-ion) interaction  ( )(tSsi ). Note that in Eq. (6.3) the individual normalized 

solvation energy auto-correlation functions contribute with a certain weight (as 

indicated by the prefactors) to the total normalized solvation energy auto-correlation 

function, )(tSE . This means that )(tSE  can decay via two separate channels where, 

even though the channel which is inherently fast would dominate the total decay, the 

average rate of the decay would be determined by the slowest of these two. In the 

limit of linear solvent response, )(tSE becomes equivalent to the experimentally 

measured spectral or solvation response function, )(tS . Hereafter, both these 
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quantities ( )(tSE and )(tS ) will be described as solvation response function in order to 

keep the subsequent discussion simple. 

  

6.2.2 Solvation Response Function due to Solute Dipole and Solvent    

Dipole Interaction, )(tS sd  

Since the normalized solvation energy auto-correlation function due to the dipole-

dipole interaction ( )(tSsd ) has already been calculated in chapter 5 and discussed in 

detail elsewhere,30 we write down only the relevant expression here,  
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where P denotes the prefactor, 
2

0

2
2 ⎟

⎠
⎞

⎜
⎝
⎛

π
ρ TkB

d . In the above equation  ( )kclm
sd  represents 

the Fourier transform of the (l, m) component of the static correlation function 

between the solute and dipolar ionic liquid species, and ),( tkS lm
solvent  is the same 

component of the orientational dynamic structure factor of the dipolar ionic liquid. 

( )kclm
sd  has been obtained by using the mean spherical approximation (MSA) theory 

for binary dipolar mixtures with one of the component (dipolar solute) at limiting 

concentration.35(a,b). ),( tkS lm
solvent  for these liquids has been calculated exactly in the 

same manner as that followed for common polar solvents described in chapter 2 and 

5. This requires, as inputs, the orientational static structure factor, translational 

diffusion coefficient and the frequency dependent dielectric function of the dipolar 

RTIL. The use of experimental dielectric relaxation data1 that span  relaxation times 

ranging from a couple of hundred femtosecond to nanoseconds and also bear the 

signature of liquid heterogeneity, ensures the biphasic decay of solvation response 

functions in these dipolar ionic liquids. In the present calculation, the orientational 

static structure factor for the dipolar RTILs are obtained from the MSA model35(a) 

with proper corrections at both 0→k and ∞→k limits. ),( tkS lm
solute  denotes the (l, m) 



 153

component of solute self-dynamic structure factor which is assumed to be given by24 

( )( )[ ]tDkDlltkS s
T

s
R

lm
solute

21exp
4
1),( ++−=
π

. The rotational ( s
RD ) and translational 

( s
TD ) diffusion coefficients of the solute (assumed as spherical body) are obtained 

from liquid viscosity using the stick and slip boundary conditions, respectively.  

Interestingly, earlier studies of the effects of solute motion revealed that solute 

motions can significantly accelerate the rate of its own solvation in viscous polar 

liquids.33 In ionic liquids, where the viscosity is even larger and slow structural 

relaxation plays a more important role, both the motions of the solute – particularly 

the rotational one – can have significant effects.  

 

Note that the denominator of the above equation is the square of the excess solvation 

energy due to solute-solvent dipolar interactions evaluated at time zero ( )0( =Δ tEsd ) 

when the dipolar species have not started rearranging yet in response to a changed 

dipolar field. This excess solvation energy decays with time to zero at ∞=t  when the 

dipolar rearrangement becomes complete. Therefore, in the present theory, the square 

root of the denominator of Eq. (6.4) provides an estimate for the magnitude of the 

solvent induced dynamic Stokes shift that originates only from the dipolar interaction 

between the solute and dipolar ionic species. The dipole-dipole contribution to the 

total dynamical fluorescence Stokes shift is then 2)0(sdEΔ . 

 

6.2.3 Solvation Response Function due to Solute Dipole and Solvent    

Charge (Ion) Interaction, )(tS si  

Following Eq. (6.1) the expression for the normalized dipole-ion solvation energy 

auto-correlation function can be written as29  
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The derivation of Eq. (6.5) is discussed in Appendix III. ),( tkS ion
αβ  is the partial 

isotropic ion dynamic structure factors and  is assumed to be given by36  

 

])(exp[),()](/exp[)(),( 2 kttkSkStkDkStkS ionionion
ααβααααβαβ τ−=−=                        (6.6)                               

 

where αD , the diffusion coefficient of an ion of type α  has been taken from 

experiments.22,37 For liquids where experimental data are not available, Stokes-

Einstein relation with slip boundary condition is used to obtain αD . 

2)()( kDkSk αααατ = , denotes the wavenumber dependent relaxation time constant 

for the ion dynamic structure factor which controls the relaxation behaviour at a given 

wavenumber k . ( )kSαα  has been approximated by the Percus-Yevick (P-Y) solution 

of binary hard-sphere mixture.35(c) We have assumed each of the ions as singly  

charged hard spheres with equal radii and used the expressions derived elsewhere38-39 

for the calculation of ion static structure factor, )(kS ion
αβ . The longitudinal component 

of the wavenumber  dependent direct correlation function between the dipolar solute 

and ions, )(10 kcsα , is again calculated in the homogeneous limit and is taken as,23-24 
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ε
μππ α , where 1μ  is the excited state dipole-moment of 

the dipolar solute, αq  the charge of  αth  type ion, rc the distance of the closest 

approach between the solute dipole and the ionic species. Note that the above 

calculation schemes for the ion-dipole and ion-ion static correlations do not consider 

at all the static heterogeneity that characterizes these systems. As a result, the 

signature of the medium heterogeneity is expected to be completely missing in the 

subsequent calculation of the ion-dipole interaction contribution to the total solvation 

energy relaxation. It should, however, be kept in mind that since )(kατ  depends on 

2)( kkSαα , each contributing wavenumber to )(tSsi would be associated with a 

different relaxation time. One therefore expects a distribution of time constant in the 

ion-dipole part of the solvation energy relaxation even if one does not consider 

explicitly the medium heterogeneity. However, description of  )(kSαα  via P-Y 

approximation weakens the distribution (due to the missing of the heterogeneity-
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induced broadening of the static structure factor) and divides )(kατ  ‘roughly’ into 

two groups - one large at collective wavelengths ( 0→σk limit) and the other small at 

nearest neighbour distances ( πσ 2→k  limit). This leads to the relaxation of )(tSsi  

with effectively two different time constants. This will be discussed further when we 

present numerical results in section 6.3.  We now just note that solvation energy due 

to solute-ion interaction (Eq. 6.5) decays with time constants mainly due to the 

relaxation of ion dynamic structure factor where translational motion of the ions 

induces the spectral shift. Therefore, the ion-solute contribution to the dynamical 

Stokes’ shift is given by  >Δ< 2)0(siE  which can be calculated easily from the 

denominator of Eq. 6.5.   

 

6.3 Results & Discussion 

6.3.1 Imidazolium Ionic Liquids: Stokes’ Shift and Dynamics 

Let us first present the theoretical estimates of the total dynamical fluorescence 

Stokes’ shift ( tνΔ ) for dipolar solute probes, DCS, C153 and 4-AP in [bmim][BF4], 

[bmim][PF6], [bmim][DCA], and [hmim][BF4]. Table 6.1 summarizes the estimated 

total dynamical Stokes shifts, the separated out dipole-dipole and dipole-ion 

interaction contributions and the measured dynamic Stokes’ shifts in these dipolar 

RTILs. A comparison with experimental shifts2 (last column, Table 6.1) immediately 

reveals that calculated shifts for C153 and 4-AP in [bmim][PF6] are in quantitative 

agreement with experiments, whereas the calculated shifts for DCS are almost half of 

what have been measured in experiments. Besides this general observation, one also 

notices the following. For each of the solute + imidazolium ionic liquid combinations, 

the predicted tνΔ with solute’s excited state dipole moment ( 1μ ) from the AM1/CI 

calculations (~14 D)17 varies in a small range of ~2000-2300 cm-1. Interestingly, the 

experimental shifts for C153 and 4-AP also show the similar variation.12-13 This small 

variation in dynamic Stokes’ shift for these solutes (DCS, C153 and 4-AP) in a given 

solvent is a reflection of some differences in their sizes and dipole moments. For 

example, a shift ( tνΔ ) of ~2100 cm-1 for DCS and C153 in [bmim][PF6] can be 

attributed to their equal diameters ( 0
153 8.7 ACDCS == σσ ),  whereas a relative 
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Table 6.1: Dynamic Stokes’ shift ( tνΔ ) for several dipolar solutes in imidazolium 

ionic liquids at 298 K: Comparison between theory and experiments   

 
System 

 

 
1μ  

(Debye)(a) 

 
Dipole-dipole 
contribution, 

t
sdνΔ   (cm-1) 

 
Dipole-ion 

contribution,
t
siνΔ  (cm-1) 

 
Total 

( =Δ tν t
sdνΔ     

         + t
siνΔ )  

(cm-1) 

 
Expt. 
(cm-1) 

 

 DCS in [bmim][PF6] 14.5 896 1262 2158 4240 

 DCS in [bmim][BF4] 14.5 760 1281 2041 4080 

 C153 in [bmim][PF6] 14.0 861 1219 2080 2000(b) 

 4AP in [bmim][PF6] 13.6 1024 1305 2329 2300(b) 

DCS in [bmim][DCA] 14.5 855 1372 2227 - 

 DCS in [hmim][ BF4] 14.5 784 1436 2220 - 

 DCS in [bmim][PF6]    20(c) 1242 1740 2982 4240 

 DCS in [bmim][BF4] 20 915 1767 2682 4080 

DCS in [bmim][DCA] 20 1047 1892 2939 - 

 DCS in [hmim][ BF4] 20 1034 1980 3014 - 

 DCS in [bmim][PF6]    28(d) 1736 2438 4174 4240 

 DCS in [bmim][BF4] 28 1629 2473 4102 4080 

DCS in [bmim][DCA] 28 1658 2649 4307 - 

 DCS in [hmim][ BF4] 28 1527 2771 4298 - 

 

(a) Excited state dipole-moment of solute used in the calculation. 

(b) Obtained in experiments via the ‘time-zero’ estimate (Maroncelli and coworkers, Chem. 

Phys. Lett. 396, 83 (2004)). 

(c) Estimated from the emission spectra using the Lippert-Mataga relation (Maroncelli and 

coworkers, J. Phys. Chem. A 110, 3454 (2006)). 

(d) See text. 

 

decrease of ~25% in diameter  ( 0
4 2.6 AAP =σ )  for 4-AP increases tνΔ  in the same 

solvent by another  ~200 cm-1.  Note that for all these solutes, the difference in dipole 

moments remains within ~3-7% only (see Table 6.1).  The solute size and dipole-

moment dependencies of tνΔ  enters into the present calculation through the solute-

dipole and solute-ion static correlations ( )(kclm
sd  and )(10 kcsα ). Only a 10% increase in 
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shift for 4-AP relative to that for DCS and C153 therefore indicates a weak solute 

dependence of the spectral shift in these liquids and is a signature of solvent 

reorganization being dominated by the relatively longer-ranged dipole-dipole and ion-

dipole interactions.23 

 

The simple representation of a solute by its dipole moment and volume suffices for 

C153 or 4-AP in these complex liquids because the short-ranged solute-solvent non-

polar type interaction effects are masked by the overwhelming contributions from the 

longer-ranged interaction. Also, for these solutes  the underlying vibronic structure of 

the emission spectrum remains largely insensitive to the solvent polarity.17 For DCS, 

however, more extended representation of the solute seems to be necessary as the 

minimalist description of the solute cannot explain the reasons for the factor of 2 

difference between the shifts measured with it, and with C153 and 4-AP. Note that for 

all the solutes considered here, the dipole-dipole contribution to the shift  ranges 

roughly between  700 – 1000 cm-1 which is, on an average, ~40% of the total shifts 

calculated for these liquids. Interestingly, this magnitude of the dipole-dipole 

contribution is approximately in the same range of shift measured with C153 in a few 

moderately polar solvents (dichloromethane, 1-chlorobutane and tetrahydrofuran) 

whose dielectric constants are similar to these ionic liquids.17 The dipole-ion 

interaction, on the other hand, constitutes almost 60% to the total calculated shifts in 

these dipolar  RTILs. This is an important finding of this work as we shall see later 

that the presence of the dipole-ion contribution in the measured shift leads to the 

apparent break-down of the existing theories of polar solvation dynamics for these 

ionic liquids.  

 

The disagreement between the predicted and measured Stokes’ shift for DCS in these 

liquids deserve further attention as an accurate prediction of solvent-induced Stokes’ 

shift is critical for a proper understanding of the solvent control of electron transfer 

reactions in these media.40 We further find that the present theory cannot reproduce 

the experimentally measured shifts for DCS in these liquids even if the calculations 

consider 20 D as 1μ , a value estimated from the solution phase fluorescence emission 

spectra of DCS41. A nearly 40% increase in 1μ  over the AM1/CI value does increase 

the shift further by ~600-800 cm-1 but the calculated total shifts are still less by ~1000 
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cm-1 than the measured values (~4000 cm-1). A more recent study, however, suggests 

that 1μ of DCS is ~22 D42 which is significantly larger than the AM1/CI predictions. 

Such a large value for 1μ of DCS is therefore explains partially the greater Stokes’ 

shift for DCS than the other two solutes. Curiously, a quantitative agreement between 

the calculated and measured shifts for DCS in these liquids can be obtained if one 

uses 28 D as 1μ  (see the last four rows of Table 6.1). Relevant quantum chemical 

calculations indeed predicted such a large value for 1μ   (and even larger ones43-45) 

where fluorescence emission in DCS was thought to occur from a twisted 

intramolcular charge transfer (TICT) state. Recent analyses of solvatochromic data of 

DCS via the Independent State (IS) model did produce ≈1μ 29 D but simultaneously 

predicted an unrealistically low ground state dipole moment ( ≈0μ 2 D).41 Subsequent 

line-shape analyses suggested a strong solvent polarity dependence of the vibronic 

structure of DCS which, in turn, makes the interpretation of the measured dynamic 

Stokes’ shift more complex. The above agreement between theory and experiment 

with 1μ = 28 D probably suggests that if the solvent-induced modifications in vibronic 

structure of DCS in these complex liquids is effectively accounted for via a suitable 

value of 1μ ,  then the present theory can successfully predict the observed shift for 

this solute also. Such an agreement, however, reflects merely a factor of 2 increase in 

1μ over the AM1/CI value, and does not imply that the excited state dipole moment of 

DCS is indeed as large as ~28 D. What all it suggests that the dynamic Stokes’ shift 

measured with DCS in these liquids and also in common polar solvents41 might not be 

due to the solvent rearrangement alone.  

 

Next we present in Fig. 6.1 the predicted decays of the solvation response function 

from Eq. (6.3) (large dashed line) for DCS in [bmim][PF6] where the corresponding 

time-resolved data2  are also shown (circles) in the same figure for comparison. Note 

the agreement between the calculated )(tSsd  and experimental results at short times 

(lower panel). It is evident from Fig. 6.1 that the decay of the calculated total solvent 

response function is much slower than that measured in experiments. The individual 

decays due to the two separate mechanisms, the dipole-dipole (solute-dipolar ion) and 

dipole-ion (solute-ion) interactions are also presented in the same figure. Interestingly, 

the individual decays seem to suggest that while the dipole-dipole interaction drives 
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Figure 6.1: Upper panel: Comparison of predicted decay of solvation response function, 

S(t), for DCS in [bmim][BF4] with experimental data (open circles). The short dashed, dotted 

dashed and long dashed lines represent solvation response function, )(tSsd , )(tSsi  and 

)(tSE , respectively. The numerically synthesized solvation response function given by 

)(100)(900)( tS.tS.tS sisd +=  is shown by solid line. Lower Panel: The short-time 

dynamics of the solvation response functions are shown in shorter time window for clarity.  

Parameters necessary for the calculation of the solvation response functions are discussed in 

Tables 6.1 & 6.2. 
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the solvation energy relaxation at the early times, the same at the longer times are 

carried out by the dipole-ion interaction.   In addition, the dipole-dipole interaction 

allows solvation energy to relax at a rate more than an order of magnitude faster than 

that by the dipole-ion interaction alone. Parameters obtained from numerical fits of 

the calculated and measured decays to the following general form, 

])/(exp[]/exp[)( 2211
βττ tatatS −+−= , are summarized in Table 6.2 in order to 

facilitate a more detail comparison. The huge difference in the calculated decay time-

scales (0.3 ns for the dipole-dipole part versus 4 ns for the dipole-ion part) validates 

the assumption that dipolar dynamics is decoupled from the ion dynamics in these 

dipolar ionic liquids. In fact, these results also provide a microscopic explanation for 

the separation of the “pure solvent dynamics” from the “ion dynamics” observed 

earlier for electrolyte solutions of “fast” solvents.34 Note that in the present theory the 

separation of time scales originates from the difference in relaxation rates between the 

orientational dynamic structure factor and the ion dynamic structure factor of these 

liquids. 

 

The experimental average solvation time for the above system being in the 

nanosecond range and approximately three times larger than that calculated from the 

dipole-dipole interaction ( )(tSsd ) decay indicates that ion structural relaxation does 

contribute to the solvation energy relaxation in this dipolar RTIL. However, as the 

corresponding decay curves in Fig. 6.1 indicate, the ion structural relaxation 

contributes only after a large part of the solvation energy relaxes via the faster 

relaxation of the orientational dynamic structure factor. The solvent translational 

modes are also found to accelerate the polar solvation energy relaxation in the dipolar 

RTILs but the effects are negligible due to very high liquid viscosity.20-21, 46-50 The 

slow relaxation of the dipole-ion interaction energy takes over in the long time after 

the dipolar part of the solvation response function has decayed to almost 1−e . The 

slowing down of the long-time decay of the solvent response function via the ion 

translation is a generic feature not only for the dipolar RTILs but also for electrolyte 

solutions of polar solvents where solute-ion interaction contributes appreciably to the 

total shift and to the long time dynamics of energy relaxation.  For example, a slow 

component of ~15-20% is found at long time in the spectral dynamics of electrolyte 

solutions in presence of 1.0 M salt concentration.34    
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Table 6.2: Solvation dynamics of dipolar solutes in imidazolium ionic liquids at 

temperature 298 K: Comparison between theory and experiments(a), (b)  

Solvation Response 
Function 

a1 τ1 
(ps) 

a2 τ2 
(ps) 

β <τs> 
(ns) 

DCS in [bmim][PF6] 
Ssi(t) 0.27 846 0.73 5281  1 4.08 
Ssd(t)  0.24 0.21 0.76 126 0.41 0.3 
SE(t)  0.14 0.46 0.86 2484 0.58 3.33 
0.90Ssd(t)+0.10Ssi(t) 0.22 0.23 0.78 219 0.38 0.66 
0.85Ssd(t)+0.15Ssi(t) 0.21  0.23 0.79 289 0.37 0.96 
Experiment 0.19±0.03 0.33±0.08 0.81±0.13 140±28 0.31±0.05 1.0±0.20

DCS in [bmim][BF4] 
Ssi(t)  0.40 595 0.60 3601 1 2.40 
Ssd(t)  0.15 0.10 0.85 92 0.41 0.23 
SE(t)  0.08 0.24 0.92 1294 0.57 1.94 
0.90Ssd(t)+0.10Ssi(t) 0.14 0.12 0.86 147 0.40 0.42 
Experiment 0.19±0.03 0.32±0.08 0.81±0.13 130±26 0.41±0.05 0.34±0.07

C153 in [bmim][PF6] 
Ssi(t)  0.27 846 0.73 5281 1 4.08 
Ssd(t)  0.30 0.26 0.70 158 0.46 0.26 
SE(t)  0.14 0.47 0.86 2508 0.59 3.32 
0.85Ssd(t)+0.15Ssi(t) 0.21 0.24 0.79 293 0.37 0.97 
Experiment  - - 1.00 500 0.49±0.1 1.0±0.20

4AP in [bmim][PF6] 
Ssi(t)   0.30 863 0.70 4885 1 3.68 
Ssd(t)  0.30 0.29 0.70 183 0.48 0.28 
SE(t) 0.15 0.46 0.85 2050 0.58 2.75 
0.85Ssd(t)+0.15Ssi(t)  0.22 0.25 0.78 329 0.40 0.85 
Experiment  - - 1.00 1150 0.65±0.1 1.6±0.30

DCS in [bmim][DCA] 
Ssi(t)   0.66 286 0.34 1880 1 0.83 
Ssd(t)   0.31 0.08 0.69 11 0.32 0.05 
SE(t) 0.11 0.06 0.89 405 0.54 0.63 
0.85Ssd(t)+0.15Ssi(t) 0.27 0.08 0.73 38 0.31 0.22 

DCS in [hmim][ BF4] 
Ssi(t)   0.29 1209 0.71 7437 1 5.63 
Ssd(t) 0.58 0.09 0.42 66 0.39 0.1 
SE(t)  0.15 0.12 0.85 4362 0.66 4.98  
0.85Ssd(t)+0.15Ssi(t) 0.45 0.09 0.55 273 0.28 1.93 

 

(a) The liquid viscosity is 3.1P for [bmim][PF6], 1.54P for  [bmim][BF4] , 0.33P for  

[bmim][DCA]  and 2.4P for [hmim][ BF4]. Here ‘P’ stands for Poise. 

(b) The diameter of various species used in the calculations: σDCS = 7.8Å, σC153 = 7.8Å, σ4-AP = 

6.2Å, σ[bmim
+

] = 6.8Å, σ[hmim
+

] = 7.2Å, −
6PF

σ = 5.4Å, −
4BF

σ = 4.6Å and σDCA
- = 5.0Å. (Ref. 2) 
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In view of the above experimental observations for electrolyte solution and its 

closeness to the model that has been used to describe the dipolar RTILs in the present 

work, we have performed a numerical experiment to explore how much of the solute 

–ion (dipole-ion) interaction induced dynamics, )(tSsi , contributes to the 

experimental decay of the solvation response function measured with DCS in 

[bmim][PF6]. As the relevant decays shown in Fig. 6.1 and the corresponding fit 

parameters summarized in Table 6.2 indicate, agreement to experimental results 

becomes almost quantitative  when )t(siS  contributes ~10-15% of the total decay. 

The close similarity in contribution of the ‘ion dynamics’ to the total decay of the 

solvent response function between the dipolar RTILs and electrolyte solutions 

strongly suggest that the dipole-ion contribution is linked to the more specific ion-

solvent exchange dynamics where the formation or breakage of the solvent structure 

in the immediate vicinity of the solute is involved. This is essentially the preferential 

solvation of the dissolved dipolar solute by the dispersed ions in a dipolar medium. As 

we shall see later, the time scale for the solvation by the ions is indeed originating 

from the nearest-neighbor interactions as the dynamics in non-dipolar ionic liquids is 

dominated by this interaction length scale ( πσ 2→k ) only.  The domination of the 

nearest-neighbor length scale in the dipole-ion part of the solvation energy relaxation 

also makes the solution static heterogeneity effects more important as ion translation 

is coupled strongly to the detail of the local solvent structure.51 A complete neglect of 

the static heterogeneity has therefore led to the bi-exponential rather than a stretched 

exponential decay of )(tSsi  (see Table 6.1).52 Moreover, the presence of this slow 

component in the decay dynamics of dipolar RTIL and its absolute dominance in non-

dipolar ionic liquids render the continuum model based dynamical theories27-28 

insufficient for these liquids.   

  

We next present our calculations for DCS in [bmim][BF4] in Fig. 6.2 where the 

experimental data2 are also shown for comparison. Here again the calculated 

)(tSsd agrees very well with the experimental decay at short times (lower panel). As 

evident from Fig. 6.2 and the corresponding fit parameters in Table 6.2, a separation 

of time scales between ion and dipolar dynamics also exists for [bmim][BF4] where 

the ion dynamics, as expected, contributes fractionally to the total decay of the  
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Figure 6.2: Upper panel: Comparison of predicted decay of solvation response function, 

S(t), for DCS in [bmim][BF4] with experimental data (open circles). The short dashed, dotted 

dashed and long dashed lines represent solvation response function, )(tSsd , )(tSsi  and 

)(tSE , respectively. The numerically synthesized solvation response function given by 

)(100)(900)( tS.tS.tS sisd +=  is shown by solid line. Lower Panel: The short-time 

dynamics of the solvation response functions are shown in shorter time window for clarity. 

Parameters necessary for the calculation of the solvation response functions are discussed in 

Tables 6.1 & 6.2. 
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solvation response function in this liquid.    In fact, a 10% contribution from )(tSsi  to 

the calculated total solvent response function for this liquid not only leads the 

calculated average solvation time to compare well with the experimental value but 

also brings the amplitudes, time constants and the stretching exponent (β) in very 

good agreement with those from experiments. The fit parameters summarized in 

Table 6.2 also reveals that when C153 or 4-AP is used as solute probe in 

[bmim][PF6], the predicted solvation times and stretching exponents are nearly the 

same as found for DCS. Although a direct comparison with the relevant experimental 

data cannot be made due to incomplete detection12-13, 53-55 of the total dynamics with 

C153 and 4-AP, the calculated results do not indicate any probe dependence of the 

average solvation times for a given solvent. In addition, the present calculations 

predict a much larger (~25-50%) ultra-fast component with a time constant less than 

100 fs for both [bmim][DCA] and [hmim][BF4] (see Table 6.2). Such a rapid response 

in the calculated solvation energy relaxation of [bmim][DCA]  originates from the 

faster dielectric relaxation times (see Table 5.1 in chapter 5).  In fact, if the solvent 

librational modes are believed to couple to solvation energy relaxation (via the dipole-

dipole part) then the present calculations suggests a sub-picosecond response is only 

expected because of the presence of a libration frequency in the ~2-4 THz range and a 

dielectric relaxation time of nearly a picosecond or a quarter of it in these liquids. This 

is the reason that for all the (solute + imidazolium liquid) combinations the relaxation 

of the calculated )(tSsd  is characterized by a fast relaxation time that ranges between 

80–300 femtosecond.  Since all the dielectric relaxation times are the fastest in 

[bmim][DCA] among the ionic liquids studied here, the dipole-dipole part of the 

solvation energy decays at a much faster rate producing the smallest average solvation 

time in this liquid.  For [hmim][BF4], although the slowest dielectric relaxation time is 

in the nanosecond, similar participation of the shortest dielectric relaxation time and 

the libration mode produces the sub-hundred femtosecond component in the )(tSsd . It 

may be further interesting to note that the calculated average solvation time for 

[bmim][DCA] is ~200 ps which is comparable to what has been measured for decanol 

with C153 at room temperature.17 Experiments on solvation dynamics in these two 

dipolar RTILs are therefore suggested so that the presence of such an ultrafast 

component is verified and the contribution from the dipole-ion interaction estimated. 
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Table 6.3: Dynamic Stokes’ shift of C153 in Phosphonium Ionic Liquids at 343 K: 

Comparison between theory and experiments (a) 

Ionic Liquids 

 

Dipole-ion 

contribution, 
t
siνΔ  (cm-1)  

Dipole-dipole 

contribution, 
t
sdνΔ     (cm-1) 

Total 

( t
sdνΔ  + t

siνΔ ) 

(cm-1) 

Expt. 

(cm-1) 

 

 [P14,666][Br] 1214  371  1585  1590 

 [P14,666][Cl] 1231  370  1601  1500 

 [P14,666][BF4] 928  381  1309  1370  

 
(a) These shifts are calculated with 1μ for C153 as shown in Table 6.2. 
 

6.3.2 Phosphonium Ionic Liquids: Stokes’ Shift and Dynamics 

We next extend the present theory to calculate the dynamical Stokes’ shift for C153 at 

343 K in the three phosphonium ionic liquids we have already mentioned in the 

Introduction. For simpler representation, we abbreviate the singly charged 

trihexyl(tetradecyl)phosphonium cation by ][ 666,14
+P . The calculated dipole-ion 

contribution to the total shift for each of the phosphonium ionic liquids is presented in 

Table 6.3 where experimental results18 are also shown. A comparison between the 

calculated and measured shifts reveals that the dipole-ion interaction accounts for 

~75% of the measured Stokes’ shifts for these ionic liquids. This is somewhat 

surprising because in the absence of any dipole-dipole interactions Stokes’ shifts in 

these liquids are expected to be determined only by the dipole-ion (solute-ion) 

interaction.  One wonders then what could be the source for the remaining 25% of the 

observed shift which amounts to approximately 400 cm-1 in these non-dipolar ionic 

liquids. What follows next is a brief discussion on the possible mechanisms which can 

account for the missing shift in these non-dipolar ionic liquids. 

 

Since a significant fraction of these liquid molecules does not contribute to the ionic 

conduction,20 there is a possibility that the undissociated fractions remain as ion-pairs. 

Subsequent quantum chemical calculations21 indicate that the formation of ion-pairs is 

energetically favored (approximately by -80 kcal/mol) in these ionic liquids where the 

electrostatic attraction between oppositely charged ions has been found to be the 

major contributor.  The degree of ion-association is found to be larger in ionic liquids  
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Figure 6.3: Solvation Dynamics for C153 in three phosphonium ionic liquids at 343 K. The 

solid and dot-dashed lines represent )(tSsd  and )(tSsi , respectively. Circles represent the 

experimental decays. 
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where ions are asymmetric in shape. Moreover, for a few non-dipolar ammonium 

ionic liquids the effective concentration of undissociated molecules has been 

estimated to be ~30% of their molar concentrations.21 In the absence of similar studies 

for phosphonium ionic liquids and considering the general results obtained from the 

conductivity measurements and quantum chemical calculations for a variety of ionic 

liquids, the ion-pair (IP) concentration for the phosphonium ionic liquids studied here 

can be expected in the same order. These ion-pairs then interact with the dissolved 

dipolar solute via dipole-dipole interactions and contribute to both the dynamical 

Stokes’ shift and the solvation energy relaxation. In addition, these ion-pairs, via 

dipole-dipole interaction among themselves, can generate an effective dipolar 

environment. If the average dielectric constant of such an environment is assumed to 

be ~5, then the subsequent calculations find the solute-IP (dipole-dipole) interaction 

contribution is ~400 cm-1 (see Table 6.3) which is ~25% of the experimentally 

observed shift with C153 in these phosphonium ionic liquids. This brings the total 

calculated Stokes’ shifts in much closer to the experimental data. The present 

calculation therefore indicates that in addition to the dominant solute-ion interaction, a 

small but non-negligible contribution may also arise from the dipolar interaction 

between the solute and ion-pairs that are present in these ionic liquids due to 

incomplete dissociation. 

 

Next we present the calculated results on solvation dynamics of C153 in these 

phosphonium ionic liquids and compare with the relevant experimental data. The 

calculated individual solvent response functions due to the dipole-ion (solute-ion) and 

dipole-dipole (solute-IP) interactions for each of the phosphonium ionic liquids are 

shown in Fig. 6.3. In the absence of any dielectric relaxation data for these 

phosphonium liquids, we calculate the dipole-dipole term, )(tS ip
sd , in the diffusive 

limit where both the rotational and translational diffusion coefficients of the 

constituent ion-pairs are obtained from the liquid viscosity37 at that temperature. Note 

that the difference in decay rates between these two individual solvent response 

functions is not as dramatic as found in imidazolium ionic liquids because here the 

time scales for both )(tSsi  and )(tS ip
sd  are completely determined by the liquid 

viscosity alone.   As already stated, a complete neglect of liquid heterogeneity in the 

present theory has led to the bi-exponential decay of the calculated solvent response  
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Table 6.4: Solvation dynamics of C153 in phosphonium ionic liquids at 343 K:    

Comparison between theory and experiments (a), (b)  

Solvent Response 

Function 

a1 τ1 

(ps) 

a2 τ2 

(ps) 

β <τs> 

(ns) 
C153 in [P14,666][Br]  

Ssi(t) 0.38 1289 0.62 6774 1 4.69 

Ssd(t) (ion pair)   0.25 708 0.75 5081 1 3.99 

SE(t)  0.37 1275 0.63 6634 1 4.65 

Experiment 1 1310±70 - - 0.38±0.05 5.05±0.43 

C153 in [P14,666][Cl]  
Ssi(t)  0.37 1359 0.63 7402 1 5.17 

Ssd(t) (ion pair)   0.24 765 0.76 5714 1 4.53 

SE(t)  0.36 1344 0.64 7262 1 5.13 

Experiment 1 1860±90 - - 0.46±0.05 4.49±0.30 

C153 in [P14,666][BF4]  
Ssi(t)  0.46 1047 0.54 5139 1 3.26 

Ssd(t) (ion pair)    0.26 581 0.74 3876 1 3.02 

SE(t)  0.44 1023 0.56 4948 1 3.22 

Experiment  1 1010±50 - - 0.51±0.05  1.98±0.11 

  
(a) The viscosities are 1.16, 1.33 and 0.87P, respectively, for phosphonium ionic liquids 

containing −Br , −Cl and −
4BF as anions.  

(b) The size of the cation is taken to be 10.68Å with σBr
- = 4.5Å, σCl

- = 4.18Å, and −
4BF

σ = 

4.6Å. (Ref. 18). 

  

functions in these liquids.52 Parameters required to fit these calculated decays are 

summarized in Table 6.4 where experimental fit parameters are also tabulated. The 

most interesting aspect of these parameters (Table 6.4) is that one of the calculated 

time constants is  ~1 ns which is very similar to the experimental solvation time 

constants ( solvτ ) for these alkylphosphonium liquids.  This close similarity between 

theory and experiments suggest that solvent structural relaxation via ion-translation is  
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Figure 6.4: The origin of the one-nanosecond solvation time constant in solvation energy 

relaxation in phosphonium ionic liquids at 343 K. Solvation response functions  for C153 in 

[P14,666][Br]  are calculated after considering the structural relaxation at collective ( 0~σk ) 

solvent mode (dashed line) and nearest neighbor ( πσ 2~k ) solvent modes (solid line). The 

calculate decays for both the wavenumbers are found to fit to single exponentials with time 

constant 18.2ns and 1.2ns, respectively, for 0~σk  and πσ 2~k  modes. 

  

 

indeed the principal mechanism for the solvation energy relaxation in these non-

dipolar ionic liquids.  

 

In order to explore further the origin of the single exponential decay of the 

experimental solvent response functions with time constant approximately in the 

nanosecond regime, we have calculated solvation energy relaxations in these liquids 

corresponding only to the collective ( 0→σk ) and the nearest-neighbor ( πσ 2→k ) 

solvent modes. Fig. 6.4 is a representative of such calculations where the predicted 

decays for C153 in [ +
666,14P ][ −Br ] corresponding to these modes are shown along with 

the relevant experimental data.18 Fig. 6.4 clearly demonstrates that the experimental 
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solvation time constant of ~1 ns in these ionic liquids originates from the structural 

relaxation involving  the nearest neighbor ( πσ 2→k ) mode only. The quadratic 

wavenumber dependence of the exponential relaxation of the ion dynamic structure 

factor (see Eq. (6.6)) is responsible for the extreme slow dynamics at these collective 

solvent modes. The slower relaxation corresponding to 0→σk has not been detected 

in Stokes’ shift measurements because either the shift due to this mode was 

undetectably small or simply the collective solvent modes are irrelevant for the 

dipole-ion interaction induced solvation energy relaxation. A simple calculation using 

20 ≈ε  shows that the Debye screening length for these liquids is ~1Å. Even-though 

such a small value of Debye screening length is unphysical for these molecular 

liquids, it suggests that the solvation energy relaxation in these liquids couples only to 

the rearrangement of the local solvent structure, and the Stokes’ shift remains 

insensitive to the events occurring beyond probably the first couple of solvation 

shells. Consequently, the relaxation of the isotropic solvent dynamic structure factor 

sets the solvation time scale in these phosphonium ionic liquids where the 

orientational relaxation plays a much less important role. This is counter-intuitive 

because one expects that charge fluctuations in these liquids are highly coupled and 

that correlated dynamics extending over many solvation shells play a role in 

solvation.56 Due to the lack of any permanent dipole moment on the ions and hence 

non-existence of significant medium dielectric constant,  much larger inverse Debye 

screening length  probably compels the phosphonium ionic liquids to behave as if the 

ionic system is  governed by relatively much less longer-ranged interactions.57 A 

signature of such an effect has recently been observed while studying temperature 

dependence of spectral shifts in electrolyte solutions of non-aqueous solvents of 

varying polarity.58 This is therefore in sharp contrast to the solvation mechanism of a 

dipolar solute in dipolar solvents where collective solvent polarization density 

relaxation governs the time scale of the polar solvent response. It is only in this sense 

that solvation dynamics in these non-dipolar ionic liquids may be termed as non-polar 

solvation dynamics.59   

 

 As several simulation and experimental studies5-11 reveal domain formation via 

aggregation of alkyl chains in ionic liquids that contain alkylated ions,  dipolar solutes 

can be partitioned into these domains and contribute to the over-all Stokes’ shift 
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dynamics. However, the contribution due to non-polar interactions between the solute 

and the aggregated domains  is expected to be very small since experimental 

dynamical Stokes’ shift for C153 has been found to be zero in several alkanes60 and 

~200 cm-1 in supercritical ethane61 with 100± cm-1 uncertainty in those 

measurements. If the assumption that the solute’s vibronic structure is independent of 

solvation environment still holds, then these results suggest that the contribution to 

the Stokes’ shift due to non-polar interaction would be at most 200 cm-1, which is 

nearly half of what is not accounted for by the dipole-ion interactions alone in these 

phosphonium ionic liquids. Interestingly,  experimental study of non-polar solvation 

dynamics of dimethyl-s-tetrazine in  n-butylbenzene, extending over a viscosity range 

of 5-orders of magnitude, not only reports a total shift in the range of ~100-200 cm-1 

( 10± cm-1), but finds also  that the structural component of  the shift relaxes non-

exponentially with ≈β 0.5 and a time constant proportional to  medium viscosity.62 

The use of the correlation between the viscosity and relaxation time constructed in 

this work produces solvation time constants ( solvτ ) for these phosphonium ionic 

liquids very similar to those found in experiments. Based on the knowledge of non-

polar solvation dynamics gained earlier, if the solvation in butyl benzene is assumed 

to be mainly carried out by the relaxation of the isotropic part of the solvent structure 

factor, then this striking similarity between the calculated and measured time 

constants may indicate that solute-domain non-polar interaction may also contribute 

to the total dynamical Stokes’ shift.   

 

6.3.3 Continuum Model and Present Theory 

 Let us examine (i) why did the dynamic continuum model of Rips, Klafter and 

Jortner (RKJ)28 fail for these liquids and (ii) can the dipolar part of the separated out 

dynamics of  these dipolar imidazolium ionic liquids be understood by the above RKJ 

theory?  RKJ theory, which does not consider the molecularity of the solvent 

particles, provides the following expression for normalized solvation response 

function 27-28 
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where 1−L  stands for inverse Laplace transform. )(zχ  is calculated from the 

frequency dependent dielectric function, )(zε ,  as follows27-28 
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where  uε   is a cavity dielectric constant and is expressed by 3α)2/()1( auu =+− εε , 

α  being the  cavity polarizablity and a  is the solute radius. Note here that the same 

)(zε  which has been used to calculate the dipolar part of the solvation energy 

relaxation ( )(tSsd ) in the present theory is also required to compute the normalized 

solvation response from the RKJ theory. However, RKJ theory, being a continuum 

model based theory, considers only the collective part of the orientational polarization 

density relaxation of the dipolar solvent. Also, it does not consider the contribution of 

the solvent translational modes to the solvation energy relaxation.  Therefore, the 

consideration of only the collective ( 0→σk  ) solvent mode and freezing of the 

solvent translation (by simply putting 0=TD ) in )(tSsd of the present theory will be 

appropriate for comparison with the RKJ predictions.  Since the present theory 

suggests that the early time dynamics in these liquids is arising from the orientational 

polarization density relaxation and since the RKJ theory provided a sound qualitative 

understanding of dipolar solvation dynamics in conventional polar solvents, a direct 

comparison between these two predictions should help decode the relationship 

between the frequency dependent dielectric function of these liquids and the rate of 

solvation energy relaxation in them. In our calculation we have used tuned dielectric 

relaxation data (see chapter 5) where we have taken )(∞ε  as that of experiment1 for 

the calculation of )(∞χ . We have assumed non-polarizable solute cavity so that 0α = .  

 

In Fig. 6.5 we compare the results obtained from the RKJ theory for DCS in 

[bmim][PF6] and [bmim][BF4]  with the predicted decays of )(tSsd . Since the RKJ 

theory considers only the collective solvent polarization ( 0→σk ) mode to calculate 

the normalized solvent response, we have removed the contributions from the solvent 

finite wavenumber modes in our calculations of )(tSsd . It is clear from Fig. 6.5 that  
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Figure 6.5: Validity test of the dynamic continuum model for solvation energy relaxations 

of DCS in imidazolium ionic liquids. Solvation response functions calculated from the 

dynamic continuum model are represented by dashed lines (red) for [bmim][PF6] (upper 

panel) and [bmim][BF4] (lower panel). The experimental results are shown by circles. 

Predictions from the present theory for these liquids by considering only the 0k →σ mode of 

the solvent polarization relaxation are shown by the dot-dashed (blue) lines. Solid lines in 

these two panels represent the calculations of )(tSsd  after incorporating contributions from 

all solvent modes. Here the short-time dynamics displayed in the inset are for clear view. 

Note the close agreement between the continuum model predictions and the present theory at 

the proper limiting condition.  
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)(tSsd  so calculated agree well with the RKJ predictions for both the liquids. These 

results also demonstrate that the RKJ theory can provide similar level of 

understanding as in common polar solvents if only the dipolar part of the total energy 

relaxation in these liquids is considered.  As expected, inclusion of finite wavenumber 

contributions slows down the dynamics, particularly at long-time due to the 

participation of solvent structure at this stage. This is also shown in Fig. 6.5. Note the 

slowing down of the dynamics due to solvent structure at finite wavenumbers in 

common polar solvents has already been explained in terms of Onsager’s inverse 

snow-ball picture.24  Interestingly, the accessibility to a much slower dipole-ion 

interaction mechanism as a separate channel not only nullifies the accelerating effects 

of solvent translation on generalized rate of orientational polarization relaxation, but 

also restores the Onsager’s inverse snow-ball picture via reversing the role of ion-

translations through the relaxation of ion dynamic structure factor. Therefore, the RKJ 

theory, being insensitive to the dipole-ion interaction induced contributions, predicts a 

faster dynamics than what is observed in experiments for these ionic liquids. This is 

the reason for the apparent break-down of the RKJ theory and other theories of polar 

solvation dynamics while explaining the Stokes’ shift dynamics in these liquids.  

 

6.4 Conclusion 

The molecular theory presented here demonstrates that dynamic Stokes’ shifts 

measured with dipolar solute probes in several dipolar RTILs can be divided into two 

parts– the solute-dipolar ion (dipole-dipole) and the solute-ion (dipole-ion) interaction 

contributions. The dipolar RTILs considered in this study are those imidazolium ionic 

liquids for which dielectric relaxation data over a very broad frequency range is 

available. The solutes used are C153, 4-AP and DCS which were used in several 

experiments for dynamic Stokes’ shift measurements. The calculated total shifts are in 

very good agreement with the measured values in these dipolar RTILs and   the 

dipole-ion interaction contribution is found to account for ~60% of the measured 

shift. For phosphonium ionic liquids, where the interaction between the dipolar solute 

and constituent ions (non-dipolar) is expected to dominate, the solute-ion interaction 

contributes nearly 75% to the experimentally observed shift. The present theory also 

predicts that the interactions of the solute with the ion-pairs and non-polar domains 

may together make a non-negligible contribution to the shift measured in 
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phosphonium ionic liquids. The non-polar interaction contribution is much less 

important for shifts in imidazolium ionic liquids because of the additional presence of 

dipole-dipole interaction. Also, the use of experimental dielectric relaxation data in 

the calculation partially accounts for the solute-IP contribution to the dynamic Stokes’ 

shift in these dipolar RTILs. The unusually large shift (~4000 cm-1) measured with 

DCS in these liquids can be reproduced in the present theory as a pure solvent-

induced dynamic Stokes’ shift by using only an excited state dipole moment of DCS 

almost twice of  that predicted by the AM1/CI calculations. A strong solvent 

dependence of vibronic structure is suggested to be responsible for the large Stokes’ 

shift measured with DCS in these liquids. 
 

A comparison with the calculated solvent response functions for imidazolium ionic 

liquids with those measured in experiments suggests that while the coupling of the 

collective solvent libration and fast dipolar rotations to the solvation energy relaxation 

gives rise to the initial sub-picosecond dynamics observed in these dipolar RTILs, 

slow relaxation of isotropic ion dynamic structure factor via ion translation produces 

the long time decay with time constant in the nanosecond range. The present theory 

reveals a strong link between the rapid initial solvent response and the fast 

orientational relaxation of these low polar ionic liquids which is reminiscent of what 

has been found in many theoretical studies of solvation dynamics in conventional 

polar solvents. This origin of the fast solvent response is therefore opposite to the 

argument2,63-70  that the collective ion translation is responsible for the sub-picosecond 

solvent response in these liquids. The dynamics of solvation in dipolar RTILs is found 

to be dominated by the orientational polarization relaxation of the environment 

created by the dipolar ions (‘dipolar dynamics’) where the ion translational motion 

(‘ion dynamics’) accounts for ~10-15% of the total dynamics. The dominance of the 

orientational relaxation in the dipolar dynamics and that of the structural relaxation in 

the ion dynamics lead to the natural separation of time scales between these two and 

enable one to describe the Stokes’ shift dynamics in dipolar RTILs in terms of 

preferential solvation. The presence of the slow component is found to be responsible 

for failure of the existing theories of polar solvation dynamics in these ionic liquids. 

Further analyses, however, reveal that dynamic continuum model theory can be used 

to describe the separated out dipolar dynamics if only the collective modes ( )0→σk  
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of the solvent polarization fluctuations are considered in the calculation of the 

solvation response function.      

 

In phosphonium ionic liquids, where solute-solvent dipolar interaction is much less 

important due to the absence of permanent dipole moment in the constituent ions, the 

ion-solute (ion-dipole) interaction contributes ~75% to the measured shift and governs 

the solvation dynamics. The absence of ‘dipolar dynamics’ therefore explains both 

single stretched exponential decay of the solvent response functions measured in these 

non-dipolar ionic liquids and the absence of sub-picosecond component in them. In 

addition, an absolute dominance of the ion-dipole interaction contribution in the 

solvation response is the principal reason for dramatically larger average solvation 

times for phosphonium ionic liquids than those for imidazolium counterparts of 

comparable viscosities.  

 

We would like to further elaborate on the mechanism of sub-picosecond solvent 

response in the imidazolium ionic liquids as the present work seems to provide an 

explanation alternative to that suggested by several simulation and experimental 

results. Note here that the present work calculates the solvation energy relaxation due 

to solute-solvent dipolar interaction in imidazolium ionic liquids by using the 

experimentally determined frequency dependent dielectric function, )(zε . 

Experimental measurements have indicated that )(zε for these ionic liquids are 

characterized by four distinct relaxations, two of which are undoubtedly diffusive in 

nature (the slowest ones). The other two relaxations in the tera-Hertz (~0.6 THz and 

~3 THz) are thought to originate from the libration (rocking back-and-forth or up-and-

down) of the cations. Further measurements of intermolecular dynamics by using in 

tandem the optical Kerr effect (OKE) and dielectric relaxation spectroscopic 

techniques, have clearly revealed that these high frequency relaxations are associated 

with the restricted angular motion of the dipolar moiety as  both OKE and DR 

spectroscopies are predominantly sensitive to the rotational motions and only weakly 

sensitive to translations through the collision-induced response.71  This is because the 

time dependent change in the dipole moment auto-correlation function 

( [ ])0()( μτμ
τd

d  ) is what is relevant to the DR measurements whereas the same 
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(time derivative) of the anisotropic part of the collective polarizability tensor 

( [ ])0()( xyxyd
d

ΠΠ τ
τ

 gives rise to the OKE signal.71  Naturally therefore, when a 

measured )(zε  with all its dispersion steps is used to calculate the time dependent 

change in solvation energy,  it is primarily the time scale of the orientational 

polarization density relaxation of the dipolar environment what is reflected in the 

calculated dynamics. As a result, the present semi-molecular theory interprets the 

experimentally observed sub-picosecond response in imidazolium ionic liquids as 

originating from the collective orientatonal response of the liquid. This is in general 

agreement with simulation predictions that early time dynamics arises from the 

cooperative motions of many particles together but differs greatly in the identity of 

the collective motion (rotation rather than translation) that renders ultrafast response 

in these ionic liquids.   

 

Further support for the predicted dominance of the solvent reorientation may be 

obtained from the following facts. Our earlier study reveals that even if the high 

frequency contributions (~0.6 THz and ~3 THz) in )(zε are completely neglected and 

only the slowest dispersions are retained, the calculated dipolar dynamics in these 

liquids (except the [bmim][DCA]) can still be characterized by a sub-picosecond 

component with an amplitude of ~10 - 15%. The participation of the high frequency 

modes then simply enhances the calculated rate of the solvation energy relaxation. 

Attention may now be focused to the Table AIII.1 (Appendix III) where a few 

characteristics from the dynamic Stokes’ shift measurements in imidazolium and 

phosphonium ionic liquids have been compiled. Had the collective inertial ion 

translations been primarily responsible for generating the sub-picoseond response, it 

(the sub-picosecond) would have also been detected in phosphonium ionic liquids, 

particularly in [P14,666][BF4] where the anion, [ −
4BF ], is also common to [bmim][BF4]. 

The fact that the average solvation times in comparatively much less viscous 

phosphonium ionic liquids are at least five times larger and dynamic Stokes shift 

~30% lesser (compared to that for C153 which is ~2000 cm-1) than those for 

imidazolium ionic liquids only stresses the role played by the solute-solvent dipolar 

interactions in governing both the magnitude of the shift and its dynamics in these two 
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types of ionic liquids. As expected, inclusion of the inertial translational dynamics in 

the calculation by using the following expression for ion dynamic structure factor 72 

       

      )]}1(1[exp{)();(
2

−+−= − iont
ionion

Bionion et
m

TkkkStkS ας

ααα
αβαβ ςς ,                    (6.9) 

 
 
( ion

ας  is the translational friction on the thα  type ion with mass αm ) did not produce 

results that might have led to conclusion any different from what has already been 

drawn regarding the origin of the observed sub-picosecond solvent response. Further 

computer simulations studies, particularly for phoshphonium ionic liquids, along the 

line of what have been done with several imidazolium ionic liquids73-74  are therefore 

required to uncover the reasons for the observed difference in solvation energy 

relaxations in these two types of ionic liquids. 

  

Even-though the present theory successfully explained in molecular terms the 

measured Stokes shift and its dynamics in imidazolium and phosphonium ionic 

liquids, the theory did so without incorporating the microscopic heterogeneity present 

in these complex liquids. This is definitely a shortcoming of the present theory that 

requires further improvement. Since alkyl chains are attached to the cations in these 

liquids are relatively long and hence possess some degree of flexibility, the chain may 

rearrange itself when the dipolar cation moiety reorients or either of the ions translate 

in response to the changed dipole moment of the solute. This would lead to a coupling 

of motions which may play some role in evolving the spectral dynamics in these 

liquids. The effects of coupled motion of the alkyl chain and ion on solvation energy 

relaxation may therefore be investigated in detail as coupled motion of protein side 

chain and water molecules has been found to play an important role in hydration 

dynamics near biologically active surfaces.75   One notices that neglect of liquid 

heterogeneity did not severely affect the results for dipolar RTILs due to the use of 

experimental dielectric relaxation data. For phosphonium ionic liquids, although the 

theory can correctly predict a time constant close to that found in experiments, 

misrepresentation of the liquid structure by its homogeneous analogue leads to 

incorrect prediction of bi-exponential decay of solvation response functions in these 

liquids. Given the complexity of these liquids, it is indeed surprising that such a 
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simple formalism, which relies upon the MSA model or its suitable variants for 

structural inputs and dielectric relaxation data for medium dynamics, can describe so 

successfully not only the dynamical Stokes’ shift and solvation response in both 

dipolar and non-dipolar ionic liquids but explains also in molecular terms the reasons 

for failure of the existing theories of polar solvation dynamics in these media. 
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Chapter 7 

 
Molecular Dynamics Simulation Studies of 

Water-Tert Butyl Alcohol (TBA) Mixtures:  

Equilibrium and Dynamical Properties 

 
7.1 Introduction 

 It is already mentioned in chapters 3 and 4 that alcohol-water mixtures exhibit 

anomalous properties at low alcohol concentration.1-30 The observed anomalies in 

many of thermodynamic and transport properties of these mixtures, starting from 

excess partial molar enthalpies,1  heat capacities,1-2 concentration fluctuations3 and its 

temperature dependence, non-monotonic molefraction dependence of Walden’s rule 

for ions16 etc,  are often linked to the structure of these solutions. Also, other 

properties such as mean molar volume, self-diffusion coefficient, compressibility, and 

the excess entropy are significantly smaller than the values expected from an ideal 

mixture of the pure liquids. Neutron diffraction9,11,14 and X-ray scattering1,5-6 

experiments of water-TBA mixture indicate that the hydrophobic interaction between 

alkyl groups of TBA drives the self association of TBA molecules when present at 

low molefractions in aqueous solution. The self-association of TBA molecules 

renders an enhanced structure of the mixture causing significant amount of loss of 

entropy.2 And, as we move from water-rich region towards TBA-rich region, the 

tetrahedral (water like) structure gradually transforms to zigzag alcohol like structure.  

       

Several Monte Carlo7,9,11,14,18 (MC) and Molecular Dynamics19-21,25-30 (MD) 

simulations were performed earlier to investigate the structure and dynamics of 

alcohol-water mixtures.  Nakanishi et al. performed MC18 and subsequently MD19-20 

simulation studies for very  small concentration of TBA in the mixture of water-TBA. 

In their simulation studies, self association of TBA molecules was observed, however 

hydrogen bonding between TBA molecules was not found. Noto and coworkers21 

carried out ab initio quantum chemical calculations in order to investigate the 



 186

hydration structure around TBA molecule and compared with those around 

trimethylamine-N-oxide (TMAO). Their results indicated that water is more tightly 

coordinated by TMAO molecule than TBA. Similar comparison was made by Paul 

and Patey30 to explain the region behind association of TBA in water when present in 

low molefraction. Note that TMAO does not show this kind of aggregation. The 

stronger interaction of hydrophilic group of TMAO with water than that of TBA was 

found to be principle reason behind this. Bowron et al. performed MC simulation 

using empirical potential structure refinement (EPSR) method to extract the structure 

functions at  different compositions of the water-TBA mixtures.9,11,14  Later on, 

Kusalik and coworkers modified the potential parameters of Noto et al. model of TBA 

and carried out fully flexible all atom MD simulations in concentrated aqueous  

solution.29 Hirata and coworkers22-24 extensively studied the TBA-water mixture by 

using the reference interaction site model (RISM) integral equation theory where 

association of polar molecules is considered through an appropriate closure 

description. These authors used the extended simple point charge (SPC/E) model for 

water and the optimized potential for liquid simulation (OPLS) force filed for TBA.22  

These studies indicated that at low TBA concentration the TBA molecules have been 

found to form cluster through hydrophobic interactions among the methyl groups, 

whereas the TBA-hydroxyl groups are involved in hydrogen bonding with water 

molecules surrounding the cluster. However, the agreement between the calculated 

partial radial distribution functions and those from neutron diffraction experiments 

and molecular dynamics simulations was found to be qualitative, even though realistic 

potentials with proper closer functions were used.23 

 

Even-though the above simulation studies revealed interesting structural aspects of 

water-TBA mixtures, the TBA concentration range considered was rather narrow.  

The only simulation work we find which covered the whole composition range of 

water-TBA mixture is that of Lee and Vegt.25 However, their studies were focussed 

only on thermodynamic and structural properties. In this chapter we shall present the 

simulation results for the mixtures of flexible 3-site SPC water31 and 15-site all atoms 

TBA.29 These models for water and TBA have been successfully used for pure as well 

as mixtures of TBA and water with low molefractions of TBA.29 One of our goals in 

this work is to check the ability of the models for reproducing the real solution 

structure for the whole composition range of the TBA water mixtures.  
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The rest of the chapter is arranged as follows: In section 7.2 we shall give details of 

the MD simulations and the simulated results are presented and discussed in Sec. 7.3. 

Finally, this chapter ends with conclusion in section 7.4. 

  

7.2 Models and Simulation Details 

Molecular dynamics simulations for the mixture of flexible 3-site SPC31 and 15-site 

all atom TBA,29 covering the whole composition range, have been performed with the 

MDynaMix32 simulation program at 300 K with 256  total number of molecules at all 

the molefractions considered. The general form of the force field in the program is 

given by 
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where b , θ  and φ  are bond length, bond angle and torsion angles. bk , θk  and φk  are 

the force constants for bond distortion, angle distortion and torsional rotation, 

respectively. q  is atomic charge; ε  and σ  are the Lennard-Jones parameters. ijr  is 

the distance between two atomic centers.  The off-diagonal Lennard-Jones parameters 

ijσ  and ijε  are obtained by using the Lorentz-Berthelot combination rules: 

2/1)( jiij εεε = and 2/)( jiij σσσ += . In addition, the O-H stretching mode is made 

anharmonic via the Morse potential29,31-32 for both water and TBA molecules. The 

form of Morse potential is given as: 2
0 )]}(exp[1{ bbDU Morse −−−= ρ .  The potential 

parameters for the models used here are given in Tables 7.1 and 7.2. 

 

At each mole fractions, the initial configuration has been started from a face-centred 

cubic (FCC) lattice in a cubic box with traditional periodic boundary condition and 

minimum image convention. At each mole-fraction, the volume of the simple cubic 

box was estimated from the experimental16 density. Ewald33,34 summation technique 

has been used for the treatment of long-range electrostatic interactions. The cut off  
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Table 7.1: Potential parameters and molecular topology for flexible 3-site SPC   
                   H2O(a) 
 

Non-bonded interaction parameters 
Atomic site ε (kJ/mol) σ(Å) q(e) 

O 0.6506 3.1656 -0.8476 
H 0.0 0.0 +0.4238 

  
(a) req(O-H)=1.00 Å and ɵeq(H-O-H)=109.47o.  Other bonded potential parameters can  

  be found in the article by Toukan and Rahman (Phys. Rev. B 31, 2643 (1985)). 

 
 
 
 
Table 7.2: Potential parameters and molecular topology for flexible 15-site TBA  
 

Non-bonded interaction parameters 
Atomic site ε (kJ/mol) σ (Å) q (e) 
   O 0.67 3.00 -0.5723 
   C(central-carbon) 0.1674 3.80 +0.3885 
   C(methyl-carbon) 0.1674 3.80 -0.3510 
   H(methyl) 0.1674 2.40 +0.1010 
   H(hydroxyl) 0.0 0.0 +0.3278 
Bonded interaction parameters 
       Bond kb(kJ/mol/Å) beq(Å) Comment 
       O-H 2284 0.9292 Morse(a) 
       O-Cc 1580 1.4164  
       Cc-Cm 923 1.5240  
       Cm-Hm 1294 1.111  
       Angle kɵ(kJ/mol/deg) ɵeq(deg)  
      H-O- Cc  195.4 111.28  
      O-Cc-Cm 314.0 111.28  
      Cm-Cc-Cm 222.3 108.745  
      Cc-Cm- Hm  143.1 111.445  
      Hm-Cm- Hm 147.3 108.754  
Dihedral angle kϕ(kJ/mol) δ n 
     H-O- Cc-Cm  0.58 0.0 3 
     O-Cc-Cm-Hm  0.83 0.0 3 
     Cm-Cc-Cm--Hm  0.83 0.0 3 

 
          (a)  D=376.35 kJ/mol, ρ=2.44 Å-1. 

           Ref: Kusalik et al., J. Phys. Chem. B 104, 9526, (2000). 
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radius for the Lennard-Jones (LJ) potential and the real-space part of the electrostatic 

interaction are set equal to the half of the box length. Nose-Hoover35 thermostat with 

coupling constant of 30 fs has been used to maintain the system temperature at 300 K. 

The multiple time-steps algorithm36 is adopted in the leapfrog Verlet integration 

scheme with long and short time steps of 1fs and 0.1fs, respectively. A neighbour list 

has been used for calculating the LJ potential, and the real space portion of the Ewald 

sum updated after every 10 fs. Each simulation has been equilibrated for 200ps before 

a production run of 800 ps. The equilibrium trajectories were saved after each 10 fs 

for further analyses.  The stored trajectories were then analysed to calculate various 

equilibrium and dynamical quantities by using TRANAL32 utility of the package and 

home-made subroutines.  

  

7.3 Results & Discussion 

We have calculated a number of experimentally measurable properties from the 

equilibrium trajectories saved. Single molecule properties reported here are averaged 

over both the number of molecules and the simulation trajectories while the collective 

properties are averaged over the simulation trajectories only. This section is divided 

into two parts. In the first part we shall present the equilibrium/static properties of the 

simulated system and compare with experiments wherever possible. The dynamical 

properties of the simulated system shall be presented and compared with available 

experiments in the next part. 

 

7.3.1 Equilibrium Properties 

7.3.1.1 Potential Energies 

In Table 7.3 we give potential energies for intra- and inter species pair of molecules 

for different mole fraction of TBA and a summary of all the potential energies is 

given in Table 7.4. Note that the potential energies given in Table 7.3 for pair of 

molecular types are divided by the number of water molecules, Nwater, for H2O-H2O, 

by number of TBA molecules, NTBA, for TBA-TBA and by min(Nwater, NTBA) for 

H2O-TBA. It is can be seen from Table 7.4 that for water-water the dominant 

electrostatic contribution in the interaction energy is consistently attractive whereas 

LJ contribution is repulsive at all the composition studied.  For water-TBA, both  the  
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Table 7.3: Intermolecular Potential Energies in H2O-TBA mixtures(a) 

  
Inter-molecular Potential Energies (kJ/mol) 

H2O-H2O H2O-TBA TBA-TBA XTBA 
<UElectrostatic> <ULJ> <UElectrostatic> <ULJ> <UElectrostatic> <ULJ> 

0.00 -57.24 9.47(-0.19) - - - - 
0.04 -57.64 9.56(-0.15) -57.46 -25.19(-2.01) -0.99 -4.48(-0.27) 
0.10 -54.08 9.56(-0.09) -33.03 -14.32(-1.18) -2.89 -12.04(-0.42) 
0.15 -52.66 9.47(-0.06) -34.63 -10.44(-0.85) -2.28 -14.97(-0.49) 
0.20 -51.34 9.28(-0.05) -30.87 -8.76(-0.53) 0.36 -16.28(-0.53) 
0.25 -51.29 9.21(-0.04) -26.63 -6.87(-0.47) 0.33 -17.79(-0.51) 
0.30 -49.43 9.04(-0.03) -25.51 -6.09(-0.37) -1.32 -18.44(-0.52) 

-45.92 8.67(-0.02) -21.89 -4.31(-0.22) -4.91 -19.99(-0.48) 
0.50 -42.62 8.26(-0.01) -17.84 -3.09(-0.14) -4.51 -21.13(-0.47) 
0.60 -40.27 7.85(-0.01) -19.65 -3.10(-0.12) -6.04 -22.05(-0.40) 
0.70 -36.22 7.19(-0.01) -23.70 -2.99(-0.11) -6.09 -22.85(-0.38) 
0.80 -29.21 5.93(0.00) -30.79 -2.86(-0.11) -5.25 -23.49(-0.34) 
0.90 -17.92 3.72(0.00) -42.38 -2.07(-0.10) -5.41 -24.06(-0.32) 
1.00 - - - - -6.32 -24.68(-0.30) 

 
(a) The quantity in bracket for LJ interactions is cut-off correction energy in LJ interaction.  
 
 
 
 
Table 7.4: Summary of the interaction potential energies in H2O-TBA mixtures (a)  
 
XTBA <UNon-bonded/ NTotal > 

(kJ/mol) 
<UBonded/ NTotal > 

(kJ/mol) 
<UInter/NTotal> 

(kJ/mol) 
<UTotal/NTotal > 

(kJ/mol) 
0.00 -48.40 6.89 -48.40 -41.51 
0.04 -66.01 8.50 -47.89 -57.51 
0.10 -92.49 10.96 -47.18 -81.53 
0.15 -115.24 13.05 -46.35 -102.19 
0.20 -137.85 15.13 -45.39 -122.71 
0.25 -160.59 17.24 -44.57 -143.35 
0.30 -181.58 19.18 -43.81 -162.40 
0.40 -226.89 23.39 -41.99 -203.50 
0.50 -272.28 27.57 -40.25 -244.72 
0.60 -315.96 31.63 -38.60 -284.33 
0.70 -361.21 35.79 -36.72 -325.42 
0.80 -404.88 39.86 -35.08 -365.02 
0.90 -450.18 44.08 -33.26 -406.09 
1.00 -495.99 48.49 -31.60 -447.50 

 
(a) As we increase the TBA concentration from water-rich to TBA-rich region the non- 
bonded 1-4 intramolecular potential energy, present only in TBA, varies from -481.10 to -
481.17 kJ/mol due to Coulomb interactions and from 17.06 to 17.08 kJ/mol due to LJ 
interactions  
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electrostatic and LJ contributions are attractive, and for TBA-TBA LJ is attractive for 

all the composition whereas electrostatic part has mixed effects.  At XTBA=0.04 the 

cross-interaction (water-TBA) to the total energy is largest in magnitude, showing a 

strong attractive interaction between unlike molecules. This energy decreases as we 

increase TBA mole fraction up-to equimolar solution and then start decreasing with 

further increase of TBA concentration. The general feature of Table 7.4 is that the 

magnitude of intermolecular potential energy decreases while that of total increases as 

we increase the TBA concentration.  This is because a large amount of non-bonded 

intramolecular contribution to the potential energies comes from electrostatic 1-4 

interactions present in TBA molecules.  

  

7.3.1.2 Site-site Radial Distribution Functions 

The relative density of one type of atom, β , from another type, α , as a function of 

distance, r , is described by  site-site radial distribution function (RDF),  )(rgαβ .  

RDFs are calculated from normalized histograms of the distances between the various 

atom pairs.  We show RDFs for OW-HW, OW-OW, OW-HTBA, OTBA-HW, OTBA-OTBA 

and OTBA- HTBA, in Fig. 7.1 while the RDFs for CCTBA–OW, CCTBA-OTBA, CCTBA-

CCTBA and CCTBA-CMTBA have been depicted in Fig. 7.2. The results are shown only 

for 5 compositions of water-TBA mixtures for clarity. Here, OW refers to the water 

oxygen, HW to the water hydrogen, HTBA to the TBA hydroxyl hydrogen, OTBA to the 

TBA oxygen, and CCTBA and CMTBA to central carbon and methyl carbon of TBA, 

respectively. RDFs for OW-HW and OW- OW shown in Fig. 7.1a and 7.1b, respectively, 

indicate that in TBA-rich composition the water molecules have tendency to associate 

through hydrogen bonding thereby forming clusters. However, the positions of the 

first peaks for these RDFs are weakly sensitive to the alcohol mole-fractions. 

Simultaneously, water and TBA molecules are distributed in such a way that 

hydrogen bonding between water-TBA and TBA-TBA also increases. In this regime 

H2O dimers, chains and single free water molecules (without forming hydrogen bond 

network among themselves) in solution coexist as a mixture. This feature might be an 

indication of micro-heterogeneities present in the TBA-rich region of the mixture.    

Several MD simulation studies and small angle neutron scattering (SANS) 

experiments have also reported this kind of feature in water-TBA as well as in other 

alcohol-water binary mixtures.4,7,11,25,37-39Note that our simulation results overestimate 
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Figure 7.1: Radial distribution function, g(r), for various atomic pairs as a function of 

separation, r, at different molefractions of TBA.  For labelling of various sites see text. The 

inset shown in the panel for OW-OW is the same plot at different scale for clear view of second 

solvation shell.  In all the panels, the solid (red), long-dashed (green), short-dashed (blue), 

dotted-dashed (pink) and double dotted-dashed (dark red) are the RDFs at XTBA= 0.04, 0.10, 

0.50, 0.70 and 0.90, respectively. 
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Figure 7.2: Radial distribution function, g(r), for various atomic pairs as a function of 

separation, r, at different molefractions of TBA.  For labelling of various sites see text. 

Notations used here for different molefractions of TBA are those used in Fig. 7.1. 

 

 

the degree of water-water association in TBA-water mixtures. The simple empirical 

potentials for pure water and TBA, and the use of combining rules for cross 

interactions might be inaccurate to describe the proper association of water-water in 

such complex systems. Fig. 7.1c and 7.1d show that water is strong hydrogen bond 

donor to TBA than TBA to water at all the compositions. The first maximum in Fig. 

7.1e and 7.1f for OTBA-OTBA and OTBA-HTBA RDFs decrease with decreasing TBA 

concentration. This indicates that TBA structure gradually disappears as it becomes 

more dilute. Also, Fig. 7.1f for OTBA-HTBA RDF suggests that there is a significant 
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amount of hydrogen bonding among TBA molecules at XTBA=0.04, in agreement with 

Bowron14 et al.  This feature is completely absent in the work of Lee25 et al.   

 

 Fig. 7.2a suggests that the swollen structure of water around TBA (smaller first peak 

and larger and broader second peak) becomes tighter when the TBA content in the 

mixture is more (increase in the first peak and decrease in the second peak). The most 

pronounced peaks in RDFs shown in Fig. 7.2b, 7.2c and 7.2d increase first and then 

start decreasing with increasing TBA concentration. This could be an indicative of 

strengthening of water structure up-to 0.10 molefraction (~XTBA=0.10) of TBA and 

the breaking of structure with further increase of TBA. 

 

 7.3.1.3 Orientational Distribution Functions  

The orientational ordering of the effective linear dipoles of molecules is in general 

given by the dipolar symmetry projections )(110 rh  and )(112 rh  of the pair correlation 

function, )2,1(h , where 1 and 2 denote the locations of molecule 1 and 2, respectively. 

For a mixture, )(11 rh l  where 2,0=l  are the determined by the weighted sums of the 

dipolar symmetry projections of pair distributions for species i  and j , )(11 rh l
ij , as40 
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where ix  and iμ  are molefraction and the dipole-moment of species i , respectively. 

The dipolar symmetry coefficients )(11 rh l
ij  for a pair of molecules of species  i  and j  

are calculated assuming water and TBA as linear molecules and are given by40-42 
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    (7.4) 

where 1û  and 2û  are the unit vectors along the dipole moment of the molecule 1 and 2 

respectively, r̂  is the unit vector along the intermolecular separation between the 

centre of masses of the two molecules and, 1Ω  and 2Ω  are the solid angles. 
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Figure 7.3: Dipolar symmetry projections )(110 rh  (upper panel) and )(112 rh  (lower panel) 

as a function of separation, r. The number tagged on each curve represents the molefraction of 

TBA. The successive curves are offset 1 unit along the y-axis. 

 

In Fig. 7.3 we have shown )(110 rh  (upper panel) and )(112 rh  (lower panel) as a 

function of separation r calculated from simulations. In pure water the function 

)(110 rh  has peaks at positions ~2.8 and ~5.2
O
A while this function has a minimum and 

a maximum at ~4.7 and ~5.4
O
A .  The peak position at ~2.8

O
A  is consistently found in 

the mixture of TBA-water at all molefraction, whereas the peak at ~5.2
O
A  is shifted 
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gradually to ~5.4
O
A  with increasing mole fraction of alcohol. Also, an intermediate 

peak at approximately 3.7
O
A , which is absent in pure water and alcohol, is emerging 

with increasing TBA concentration. The projection  )(112 rh  has also two prominent 

peaks at positions ~2.8 and ~5.1
O
A  in pure water where there is only one prominent 

peak at ~5.2
O
A  has been found in the case of pure TBA. Other features of projection 

)(112 rh for the mixture are very similar to that of )(110 rh . 

 

7.3.1.4 Dielectric Constant 

Once the orientational correlation functions are obtained, the static dielectric constant 

( 0ε ) of the mixture can be calculated by using the famous Kirkwood formula40-42 
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where  
9

4 2πβρμ
=y    is called polarity parameter and ρ   is the total number density. 

 

The value of 0ε  can also be calculated from the fluctuation of the collective dipole 

moment of the system defined as, ∑= μM , μ  being molecular dipole moment, 

using following equation40-42 
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with V as the average volume of the simulation system, Bk  as the Boltzmann 

constant. In Fig. 7.4 the calculated dielectric constants for TBA-water mixtures using 

Eqs 7.5, and 7.6 are shown by open circles and triangles, respectively.  Also shown 

are the experimental data (filled circles) for static dielectric constant reported in the 

works of Broadwater and Kay.16 The average value of 0ε  and the error bars were 

calculated using block method by dividing the collected trajectories into slightly  
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Figure 7.4: Comparison between calculated static dielectric constants using Eq. 7.5 

(connected open circles) and Eq. 7.6 (connected open triangles) , and  experimental data 

(filled circles). The error bars have been estimated using block method.  

 

overlapping (0 to 500ps, 100 to 600ps etc) blocks of 500ps time span. The calculated 

values of static dielectric constant are in good agreement with experimental data. 

 

7.3.2 Dynamical Properties 

7.3.2.1 Velocity Autocorrelation Function 

In a binary mixture of species 1 and 2, the normalized velocity autocorrelation 

function (VACF) for ith   (i=1, 2) species particle is defined as   
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where )(tvr  is velocity at time t and  < >  describes the average over both the number 

of ith species particles iN  and initial time 0t .  The calculated VACF for both water 

and TBA molecules as a function of time at different mole fractions are shown in Fig.  
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Figure 7.5: Velocity autocorrelation function (VACF) for water (upper panel) and TBA 

(lower panel) molecules as a function of time t at different molefractions of TBA. VACFs at 

XTBA=0.04, 0.10, 0.50, 0.70 and 0.90 are shown by solid (red), long-dashed (green), short-

dashed (blue), dotted-dashed (pink) and double dotted-dashed (dark red) lines, respectively. 

The insets shown in both the panels are for clear view.   
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7.5. In the upper panel we have shown VACFs for water while the decay profile of 

VACFs for TBA molecule has been shown in the lower panel. Typical backscattering 

behaviour is found for both types of solvent molecules at all the composition studied 

here. This is a well-known signature of closely packed structure of the surrounding 

near neighbours. The position of the local minimum at short time in VACF for water 

is gradually shifting towards right with more negative value of VACF with increasing 

TBA molfraction. This suggests that for short time (0.075-0.15ps) the degree of back-

scattering in the translational motion of water molecules increases with increasing 

TBA molefraction while this feature is completely reversed for longer times(0.15-

0.5ps). A significant amount of negative portion in the VACF of TBA reveals that 

there is moderate cage formation around TBA molecules and the strength of the 

caging effect increases with decreasing TBA concentration.  

 

7.3.2.2 Mean Square Displacement 

The average mean square displacement (MSD) of ith   (i=1, 2) species particle is given 

by 
0,

2
00 )]()([

tNi
trttr rr

−+  where )(trr  is the position at time t , and < > denotes the 

average over both the number of ith species particles iN  and initial time 0t . The 

calculated MSD for both water and TBA molecules as a function of time at different 

mole fractions are depicted in Fig. 7.6.  The square root of MSD, so-called root mean 

square displacement (RMSD), is a measure of effective distance travelled by the 

particle. Let’s take an example of XTBA=0.10 shown by long-dashed line of the Fig. 

7.6 for both water and TBA. After 100ps the average distance travelled by a water 

molecule is about 10Å while it remains 8Å for TBA after same time. Therefore, the 

mobility of water molecule is more than that of TBA at this mole fraction. For water, 

MSD curve shows that the mobility of water decreases up-to 70% of TBA and then 

increases. While, for TBA it decreases first up-to ~15% and after then start increasing 

as we increase the TBA concentration. This behaviour can be clearly seen in diffusion 

coefficient of each molecule which has been calculated from the slope of the MSD 

curve (for time t sufficiently large) as a function of TBA mole fraction. 
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Figure 7.6: Mean square displacement (MSD) for water (upper panel) and TBA (lower 

panel) molecules as function of time, t, at different molefractions of TBA. Notation remains 

the same as that in Figure 7.5. 
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7.3.2.3 Self Diffusion Coefficient 

The translational self-diffusion coefficient Di of ith species particle can be determined 

by Green-Kubo relation through the integral of VACF over a sufficiently long time as  

 

                   dttf
m

TkD i
v

i

B
i ∫

∞

=
0

)( ,              (i =1 or 2)                                                 (7.8) 

 

where im  is mass of the ith species particle. The translational self-diffusion coefficient 

Di can also be determined from the slope of the mean square displacement (MSD) as  
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The calculated self-diffusion coefficients for water (upper panel) and TBA (lower 

panel) molecules from VACF (connected open circles) and MSD (connected open 

triangles) roots have been shown in Fig. 7.7. The integration limits in Eq. (7.8) have 

been taken from 0 to 50ps for both water and TBA at all the molfractions. We have 

taken the slope of MSD in Eq. (7.9) from time t equal to 25 to 250ps in all the cases. 

These data were also compared with PGSE NMR experiments done in two different 

groups by Kipkemboi et al.43 (filled circles) and by Price44 and co-workers (filled 

squares). In the both the experiments below XTBA=0.20 the self-diffusion coefficients 

of both water and TBA decrease rapidly with increasing TBA molfraction. Above 

XTBA=0.20 the diffusion coefficients of both the components remain nearly invariant 

with the composition of the mixture. Apart from the magnitude, from Fig. 7.7 it is 

clear that the basic trend of diffusion coefficients of water is well captured up to 

XTBA=0.70, and simulation predicts a significant increase of water diffusion 

coefficient for XTBA > 0.70.  The diffusion coefficient of TBA is poorly predicted by 

the simulation except at water-rich region.  

 

7.3.2.4 Mutual Diffusion Coefficient 

In binary liquid mixtures, mutual diffusion describes the ability of one species 

diffusing into the other. This is different from self-diffusion which is a measure of  
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Figure 7.7: Self-diffusion coefficients of water (upper panel) and TBA (lower panel) 

molecules as functions of composition of water-TBA mixtures: The self-diffusion coefficients 

calculated from VACF and MSD are shown by the connected open circles and connected 

open triangles. Also shown are the data spin-echo-NMR experiments for the diffusion 

coefficients from Refs. 43 (filled circles) and 44 (solid squares). 

 

mobility of each component in the absence of any external force. Therefore, mutual 

diffusion is associated with the collective motion of many particles together in the 

mixture and arises due to the gradient of the composition (or chemical potential). 

Mutual diffusion can be expressed in terms of velocity correlation functions of the 

collective motion of the system or in terms of mean square displacement of the centre 
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of mass of the particles of either of the two components.  The mutual diffusion 

coefficient D12 (= D21) in a binary mixture of species 1 and 2 is defined by Green-

Kubo relation as45-48   
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where relative velocity )(12 tJ
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and N is the total number of particles, x1 and x2 are mole fractions of species 1 and 2, 

respectively. )(tvk
r  is the velocity of  kth particle of species 1 at time t and )(tvl

r  the 

velocity of  lth particle of species 2 at time t. The thermodynamic factor Q can be 

expressed as  
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where ρ  is the number density and )(rgij  is the radial distribution function for pair 

of species ij.    

 

By putting the value of )(12 tJ
r

 from Eq. (7.11) into Eq. (7.10) and following the 

straight forward algebra we get  
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where D1 and D2 are self-diffusion coefficient of species 1 and 2, respectively. The 

distinct diffusion coefficient dD arising due to all the dynamic cross correlation 

functions is given by    
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Here, < > denotes the time average. The physical significance of distinct diffusion 

coefficient is as follows: when 0=dD  the mixture is ideal, meaning that correlations 

between intra and inter species molecules are balanced. A negative (or positive) value 

of distinct diffusion coefficient is an indicator of associative (or dissociative)   nature 

of the mixture. When dD is positive then the mutual diffusivity will be greater than its 

ideal value and if it is negative, the mutual diffusivity will be less than the ideal value 

(weighted sum of self-diffusion coefficients). 

       

The mutual diffusion coefficient D12 has been calculated from the integration of 

relative velocity correlation function (RVCF) with integration limit 0 to 50ps.  In Fig. 

7.8 shown are simulated (open circles) and experimental49-51 (filled circles) mutual 

diffusion coefficients. Note that agreement between simulation and experimental data 

is semi-quantitative for water-rich region while comparison could not be made 

beyond 15% concentration of TBA due to lack of experimental results. Also note that 

the statistical error in the simulated mutual diffusivity. Here error bars in this case 

have been calculated by block method. The statistical error in mutual diffusivity is of 

great concern and could be reduced up to some extent by averaging over more 

simulation runs. In the above calculations, the value of thermodynamic factor Q has 

been calculated using Eq. 7.12 where )(rgij  has been determined using the centre-of 

mass of each molecule. The numerical error in the integration of radial distribution 

functions is also of serious concern and therefore several other proposed methods (e.g. 

by using activity coefficient and vapour pressure data) for calculating Q could also be 

used. The typical behaviour of RVCF as a function of time is shown in Fig. 7.9 at  
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Figure 7.8: Mutual diffusion coefficient in water-TBA mixture as function of TBA mole 

fraction. The simulated results have been shown by the open circles while available 

experimental data for a few mole fractions are shown by the filled circles. 
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XTBA=0.10 (top panel), 0.50 (middle panel) and 0.90 (bottom panel).  



 206

 
            XTBA=0.10                             XTBA=0.50                                XTBA=0.90 

              

Figure 7.10: Snapshots of the simulated box for XTBA=0.10, 0.50   and 0.90. Oxygens are 

shown as blue, carbons as green and hydrogens as white spheres. 

 

three different mole fractions of TBA. Since RVCFs are collective quantities unlike 

VACF, which is averaged over number of particles also, they show larger 

fluctuations.   

 

7.4 Summary and Conclusion 

Let us summarise first the main results of this chapter. We have performed molecular 

dynamics simulation for fully flexible alcohol-water mixtures over whole composition 

range and compared the equilibrium and dynamical properties with existing 

experimental results. The simulated results indicate that these models for water and 

TBA molecules are able to capture many physical properties of their mixture at least 

in semi-quantitative level.  For TBA concentration less than 15%, the hydrophobic 

interaction between alkyl groups of TBA molecules makes it strong structure maker. 

The enhanced water structure induced by hydrophobic interactions is gradually 

broken down beyond 15-20 % of TBA and simultaneously the contribution to inter 

and intra species hydrogen-bonding strength increases.  Also, at concentrated TBA 

regime the water dimers and chains are formed, showing very pronounced peaks in 

corresponding radial distribution functions. Along with these dimers and chains a few 

free water molecules are found in the simulation. The simulated dielectric constant of 

the mixture is semi-quantitatively agreeing with the experimental data. Self-diffusion 

coefficient of water is qualitatively matching with PGSE experiment at all 
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               XTBA=0.10                                                               XTBA=0.90  

Figure 7.11: Snapshots of the simulated box for XTBA=0.10 where water molecules have 

been removed for clarity and for XTBA=0.90 where TBA molecules have been removed to 

enhance the visibility of water dimers, and chains.  

 

 

molefractions while self-diffusion coefficient for TBA is poorly predicted by the 

simulation. Mutual diffusion coefficient in the mixture is also found to be in good 

agreement with the available experimental data in water-rich region. Further studies 

are required to understand why the present simulations fail to predict the self-

diffusion coefficients any better. Particularly, one needs to understand whether the 

model potentials used in the present study is sufficient enough to create the structure 

as observed in real solutions.  
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Chapter 8 
 
Concluding Remarks and  
Future Problems 

Since concluding remarks are already given in each chapter, we refrain from adding a 

whole new chapter for Conclusion alone. Rather, we take this opportunity to briefly 

outline the main results of the works that have embodied the present Thesis and 

mention some related and interesting problems for future study. 

 

It may be evident from the results presented in previous chapters that the theme of this 

Thesis revolves around generating an understanding of the interaction effects of 

various kinds (for example, solute-solvent, ion-solvent, ion-ion, solvent-solvent etc.) 

on simple chemical events in complex liquids and solution mixtures. Since both 

technologically relevant and biologically important chemical reactions occur mostly 

in complex liquid environments, study of events in solution phase assumes even more 

importance. The complexity in pure solvents may some time originate from specific 

interactions, such as, H-bonding interactions in water and amide systems. It has 

indeed been suggested that collective vibrations of network constructed via 

intermolecular H-bonding in such systems is relevant for many biologically relevant 

activity. One of the goals of the present study has been to explore the role of such 

collective low frequency modes in formamide on something very simple – ion 

diffusion and solvation energy relaxation. Results presented in chapter 2 do indicate 

that the complexity in solvent-solvent interactions affects these solute events 

occurring in this medium. In fact, the relevant results suggest that without the 

participation of these collective modes, the calculated results would be far away from 

being in good agreement with the experimental data.  

 

As solute-solvent and solvent-solvent interactions can be probed by monitoring 

diffusion of a species in a given medium, ion transport and particle diffusion have 

been studied in binary mixtures. Inter- and intra-species interactions in water-TBA 

mixtures renders heterogeneity in solution structure which affect these diffusive 

processes enormously. It is this heterogeneity in solution structure that has been found 
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in the calculations (presented in chapter 3) to regulate the non-monotonic alcohol 

mole fraction dependence of limiting ionic conductivity of alkali metal ions in water-

TBA mixtures. The importance of heterogeneous structure is further realized when 

static correlations obtained by employing the MSA for model binary polar mixtures 

(developed in chapter 4) are found to be insufficient as input in the theory for the 

calculation of ionic conductivity. Even-though the MSA theory based analytical 

scheme developed in chapter 4 for studying the role of solvent size and dipole 

moment disparity is insufficient for treating the real complex mixtures, it has clearly 

indicated that ‘preferential solvation’ in binary mixtures is rather generic in nature, 

extent of which is accentuated (attenuated) in presence (absence) of specific ion-

solvent and solvent-solvent interactions. 

 

The situation becomes even more complex when electrostatic interaction, in addition 

to dipolar and non-polar interactions also exist in a liquid solvent. Several room 

temperature ionic liquids, particularly imidazolium ionic liquids are examples of this 

category. In such solvents, measured Stokes’ shifts (dynamic) have been found to be 

as large as in strongly dipolar liquids and also an ultrafast component in the time 

evolution of fluorescence spectrum of a dissolved dipolar probe. Results reported in 

chapters 5 and 6 reveal that large Stokes shift in these otherwise less polar systems 

originates from the interaction of the dipolar solute with the dipolar moiety of the ions 

constituting the liquid (dipole-dipole interaction) and with the ions (ion-dipole 

interaction). It is also shown that while the presence of the solute-solvent dipolar 

interaction may be responsible for the ultrafast solvent response at early times in these 

liquids, the ion-solute (ion-dipole) interaction gives rise to a slow decay of the 

solvation response function which, in turn, renders the continuum model based 

theories inapplicable. As already discussed, the collective orientational response of 

the dipolar environment has been suggested to be the origin for early time response in 

these liquids which is different from the explanations proposed by many simulation 

studies. Even-though the present theoretical approach generates some debate about 

the validity of the model (ionic liquids modelled as electrolyte solutions) used, the 

works reported here (chapters 5 and 6) explain very satisfactorily the solvation 

dynamics measurements in both imidazolium (dipolar) and phosphonium (non-

dipolar) ionic liquids. It is interesting to note that except the present theory, no other 

study (simulation or theory) is known to describe systematically the difference found 
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in dynamic Stokes’ shift measurements involving imidazolium and phosphonium 

ionic liquids. 

 

The results presented in chapters 2 – 6 in this Thesis are obtained via theory that 

required significant computational endeavour. It was then only logical to expand the 

computational aspect to another domain – simulation studies - in order to study the 

real systems with all its complexities. Aqueous mixtures of TBA are chosen for such 

simulation study where generation of static solvent structure as accurate as possible 

has been another motivation. It has been found in chapter 3 that accurate description 

of static solvent structure is crucially important for understanding the alcohol mole-

fraction dependence of limiting ionic conductivity in water-TBA mixtures. Another 

motivation of studying this mixture is to explore the ability of the model potentials to 

describe the experimentally observed composition dependence of the self and mutual 

diffusion coefficients of water and TBA molecules.  Simulation results presented in 

chapter 7 indicate a partial success in this direction. Further studies are required to 

generate better understanding of this mixture and other related polar mixtures which 

would help a molecular description of non-reactive dynamical events in mixtures of 

complex solvents.  

 

8.1 Future Problems 

8.1.1 Electrolyte Concentration Dependence of Molar Ionic        

Conductivity in Mixed Solvents 

In chapters 2 & 3 we have already discussed about a microscopy theory of limiting 

ionic conductivity of ions when dissolved in infinite dilution in pure and mixed 

solvents. The success of the present theory encourages its obvious generalization to 

concentrated electrolyte solutions where experimental results are also available.1 

Though such a theory in pure solvents has already been established,2 studies in 

mixture of solvents are still lacking. In concentrated electrolyte solutions one would 

expect a crucial role of ion-ion interaction and effects of preferential solvation on the 

ionic conductivity.  
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8.1.2 Ionic Conductivity of Multivalent Ions in Pure Solvents 

Limiting ionic conductivity of multivalent ions is another area where no microscopic 

theory is found to explain the existing experimental data.3-4   Like the monovalent 

ions, the Walden product for multivalent also show a non-monotonic dependence with 

the inverse of the crystallographic radii.4 The validity of the extended molecular 

hydrodynamic theory presented in chapter 2 for multivalent ions could, however, be 

questioned because of the following reasons. The EMHT theory is based on linear 

response assumption i. e. the perturbation produced by the electric field of the ionic 

solute is assumed be so small that solvent structure and dynamics do not change. 

However, the linear response may break down for multivalent ions and the nonlinear 

effects will play a crucial role in determining the ionic conductivity.  Therefore, a 

molecular theory which accounts for the non-linearity in both structure and dynamics 

of pure solvents is certainly would be necessary for studying ion conductivity of 

multivalent ions in pure polar solvents.  
 

8.1.3 Solvation and Rotational Dynamics in Electrolyte Solutions of    

Mixed Solvents 

Electrolyte solutions of mixed polar solvents are good reaction medium as reactant-

medium interaction can be modified by changing either the mole-fraction of one of 

the solvent component or by increasing the salt concentration. Simple fluorescence 

Stokes’ shift studies of a dipolar solute in such ‘ternary’ solutions can provide useful 

information on the competition between ion-solute interaction and ion-solvent 

preferential solvation. Time-resolved studies may further reveal the effects of these 

interactions on solvation and rotational dynamics of a solute in such mixtures. 

Experimental results for these systems are now beginning to emerge.5 Hence, 

theoretical or simulation study would be extremely useful to understand the 

experimental results of these multi-component mixtures. 

 

8.1.4 Solvation and Rotational Dynamics in (Amide + Salt) Mixtures 

It has been long-known that acetamide, upon mixing with sodium or potassium 

thiocyanate, becomes molten at room temperature. This mixture also super-cools and 
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the extent of supercooling depends on the identity and valence of the mixed ions.6 A 

large number of physico-chemical studies of such mixtures have been carried out but 

there exists hardly any dynamical studies of these mixtures. One should investigate 

these non-aqueous electrolyte mixtures in order to reveal the effects interactions on 

simply dynamical events in such systems and also to find out how dynamically 

similar these systems are to ionic liquids. 

 

8.1.5 Electron Transfer Reactions in Room Temperature Ionic   

Liquids   

In a very recent computer simulation study, the solvent modification of the rate of an 

electron transfer reaction (ETR) in a room temperature ionic liquid is found to be very 

similar to that in acetonitrile.7 This is surprising because the average solvation rates in 

these two types of liquids are quite different. However, there exists a similarity in the 

time scale of the ultrafast solvation response in these two liquids. If the origin of the 

ultrafast solvation response in the ionic liquid considered in the simulation is the same 

as that in acetonitrile (that is, arising from the solvent orientational polarization 

relaxation), then such a similarity of solvent-induced modification of rate between 

these two types of solvents are only expected. This should be explored further in order 

to establish the relation between ETR and solvation dynamics in ionic liquids in one 

hand and to find out the reason for such similarity in rate modification between ionic 

liquid and common dipolar solvents on the other.  

 
8.1.6 Solvation Dynamics in Common Dipolar Solvents Using DCS as 

Probe 

Recent dynamic Stokes’ shift measurements in common dipolar solvents with trans-4-

dimethylamino-4’-cyanostilbene (DCS) have found  Stokes’ shifts in common dipolar 

solvents are uniformly larger and dynamics somewhat faster than observed with 

another solvatochromic probe, coumarin 153 (C153). This has also been the finding 

for room temperature ionic liquids. Recent calculations of Stokes’ shift in ionic 

liquids (discussed in chapter 6) indicate the whole of the observed shift for DCS may 

not originate purely from the solvent rearrangement. Interestingly, a very large value 
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of excited state dipole moment of DCS is required in the calculations to generate 

shifts as large as found in experiments involving ionic liquids. However, such a large 

value of the excited state dipole moment for DCS is not supported by the quantum 

mechanical calculations and a change in vibronic structure is suggested to be 

responsible for the observed large shift.  It would therefore be interesting to calculate 

both Stokes’ shift and solvation dynamics for several dipolar solvents with both DCS 

and C153 as probes and find out the correlation between the observed larger shift and 

faster dynamics.    

 
The problems discussed above are just a few representative ones, study of which may 

provide useful information on interactions and their effects on various events 

occurring in various complex media. Since for these systems either experimental 

results are already available or would be made available soon, simultaneous 

theoretical and simulation studies would bring out comprehensive understanding of 

these systems. This is important not only from the basic scientific point of view but 

also from the industrial aspects as many of these systems possess great potential for 

use in chemical industry and technology development. This has been certainly one of 

the goals of the work described in the present Thesis which is probably partially 

satisfied. Therefore, a lot more is to be done. 
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Appendix I 
 
The Generalized Rate of Orientational Polarization Density 

Relaxation, ),(∑lm
zk  

The generalized rate of orientational polarization density relaxation, ),(∑lm
zk , is an 

outcome in the solution of coupled hydrodynamic equations for number and 

momentum densities. The origin of ),(∑lm
zk  is as follows:  In general, for a dense 

molecular liquids the slow-conserved variables are number density, ),,( td Ωrρ , and the 

translational and angular momentum densities, ),,( tT Ωrg  and ),,( tR Ωrg , respectively. 

The extended hydrodynamic equations for these conserved variables are given by1,2 
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where I represents the average moment of inertia of solvent molecule of mass M, 
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where i stands for either translation (T) or rotation (R). )]([ tF dρΔ  is the excess free 

energy functional of pure solvent (without solute). Equation AI.1 is continuity 

equation for number density, ),,( td Ωrρ , of the solvent. Note here that the memory 

kernel  )()( Ω-Ωr-r ′′−′Γ δt,ti  describes the dissipative dynamics in a non-Markovian 

system where the forces and torques acting on a solvent molecule are correlated only 

space and time but not in orientation. This approximation1 has been found to be 

sufficiently valid in the study of polar solvation dynamics which basically probes 

only the orientational relaxation of rank l=1.  )( ,t,fi Ωr  are the random force and the 

random torque  acting on a particle at time t. The dissipative memory kernels are 
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related to the random force and random torque auto correlation functions through 

second fluctuation dissipation theorem.1 

 

Now, Eqs. (AI.1) and (AI.2) are solved by using Fourier and Laplace transformation 

in space and time, respectively. In the inverse space the above coupled equations 

consist of fluctuating number density ),,( td Ωkδρ  and direct correlation 

function ),( ΩΩ ′,kc  of the solvent. Then, these functions are expanded in spherical 

harmonics as1   
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Here, k is chosen to be parallel to the z-axis of laboratory fixed frame. The use of 

above expansion in hydrodynamic equations gives an equation in terms of expansion 

coefficients  ),( talm k  and ),( kllmc . It is to be noted that the evolution of density 

relaxation takes place through ),( talm k . Therefore, the solution of the coupled 

hydrodynamic equations is derived in terms of ),( talm k .  We first differentiate Eq. 

(AI.1) with respect to time so that momenta densities are eliminated and then by 

taking Fourier and Laplace transformations, we get the following expression for the 

Laplace transform of   ),( talm k 1-4 
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where ),(∑lm

zk  is  generalized rate of orientational polarization density relaxation 

and is given by 1-4 
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where σ , M and I  are the  diameter, mass and average moment of inertia of the 

solvent molecule, respectively. ),( zkTΓ  and ),( zkRΓ  are the wavenumber and 
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frequency dependent translational and rotational memory kernels, respectively. 

),()1)(4/(1),( 0 kllmckllmf m
d −−= πρ , describes the orientational static structure of 

the solvent.  

 

Solvent Translational Friction Kernel, ),( zkTΓ  

The translational memory kernel, ),( zkTΓ  is obtained by isotropic (l=m=0) 

component of ),( zalm k  as1-4 
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By taking its correlation with function )0,( =talm k  and ensemble average we get 
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Rearranging the above equation we get 
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where ),( zkS  and )(kS  are wavenumber and frequency dependent isotropic part of 

solvent dynamic structure factor and static structure factor, respectively. The isotropic 

solvent static structure factor is often calculated by using Percus-Yevick (PY) hard 

sphere direct correlation function, )(kcPY as: 10 )](1[)( −−= kckS PYdρ .   The 
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wavenumber and time dependent isotropic part of solvent dynamic structure factor, 

),( tkS , is assumed be given by 1  
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where Solvent
TD  is solvent translational diffusion coefficient and can be calculated from 

its viscosity. L-1 is Laplace inversion operator. 

 

Solvent Rotational Friction Kernel, ),( zkRΓ  
 

The calculation of rotational memory kernel ),( zkRΓ  is complicated and highly 

nontrivial for all wave numbers. However, an approximate but reliable scheme for the 

calculating ),( zkRΓ  for underdamped liquids has been proposed by Roy and Bagchi2-

4. In this scheme the k-dependence of ),( zkRΓ  have been neglected and therefore the 

kernel ),( zkRΓ  is replaced by ),0( zkR =Γ . The function ),0( zkR =Γ  is directly 

related to frequency dependent dielectric function )(zε through a molecular theory 

as2-4 
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where 0ε  the static dielectric constant of the medium and ∞ε  is high frequency 

dielectric constant. )0,110( =kf  is the long wave-length of ),110( kf . 
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Appendix II 
 
Derivation of the Solvent Response Function for a Mobile 

and Fixed Dipolar Solute 

Here we present the solvent response function, S(t), for a mobile (both translationally 

and rotationally)  and fixed dipolar solute using density functional theory. We start 

with the excess free energy functional for a system of solute dissolved in a solvent 

given by1-2 
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                                                                                                                               (AII.1) 

where ),( Ωrsρ and ),( Ωrdρ  are, respectively, the solute and solvent number density at 

position r with orientation Ω  at any time t. ),;,( ΩrΩr ′′ssc , ),;,( ΩrΩr ′′ddc  and 

),;,( ΩrΩr ′′sdc  are the position and orientation dependent solute-solute, solvent-

solvent and solute-solvent  direct correlation functions, respectively. The fluctuation 

in solute density ( sδρ ) over its bulk value, 0
sρ , is given by, 

πρρδρ 4/),(),( 0
sss −= ΩrΩr .  πρρδρ 4/),(),( 0

ddd −= ΩrΩr  is the space (r), 

orientation (Ω) and time (t) dependent fluctuation in the average number density 0
dρ  

of the pure solvent. Note that in the above functional Taylor expansion of the free 

energy, the higher order (third, fourth etc) terms are small and so neglected.   Now we 

need the expression for solvation energy which is essentially the effective potential 

energy of solute due to its interaction with the surrounding solvent molecules. By 

taking functional derivative of the above free energy functional and equating it equal 

to zero for equilibrium condition, we get the expression for equilibrium density of 

solute as1,3  
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where )Ω,r(eff
sVΔβ is position and orientation dependent effective potential acting on 

the solute due to solute-solute, solute-solvent interactions and is given by1  
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However, the probe molecules (solute) that are often used in solvation dynamics 

experiments are present in infinite dilution. Therefore, the term originating from 

solute-solute interaction can be neglected. We assume that the temporal evolution of   

),( Ωreff
sVΔβ  is originated solely from the time dependent fluctuation of position and 

orientation dependent solvent density. With this assumption we have, 
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The above equation represents the time dependent fluctuating effective potential 

acting on an immobile solute, both rotationally and translationally. It is shown, 

however, earlier by Biswas and Bagchi that consideration of solute motions 

accelerates the rate of its own solvation.1,3 The expression for the position (r ), 

orientation (Ω ) and time (t) dependent fluctuating solvation energy for mobile dipolar 

solute of density ),( Ωrsρ can be given as follows1,3 

 

          ∫ ′′′′′′−=Δ ),,(),,(|),(),( tcdd;tTktE dsdsBsol ΩrΩΩ|r-rΩrΩrΩ,r δρρ              (AII.5) 

 

If we define the inverse Fourier transformation as 
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where )(rf can be ),,( ts Ωrρ , ),,(| ΩΩ|r-r ′′sdc  and ),,( td Ωr ′′δρ , and )(kf  is their 

respective Fourier transforms ),,( ts Ωkρ  , ),,( ΩΩ ′kcsd  and ),,( td Ωk ′δρ , then Eq.  

(AII.5) in wavenumber space can be written as 
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The expansion of the angle dependent quantities into spherical harmonics and 

subsequent integration over angle lead Eq. (AII.7) to take the following form1,3  
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where )(
11

,tA ml k , ),( 222 kmllcsd ′  and )(
22

,ta ml k  are the expansion coefficients of solute 

density ),,( ts Ωkρ , solute-solvent direct correlation function ),,( ΩΩ ′kcsd  and 

fluctuating solvent density ),,( td Ωk ′δρ . Using Gaussian decoupling approximation in 

energy autocorrelation function defined by >ΔΔ=< )0()()( solsolEE EtEtC , in 0q =   

limit, we get1,3  
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where ),( tkS lm
solute  is the (l, m)th component of the wavenumber dependent self part of 

the solute dynamic structure factor and is given by 
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and ),( tkS lm
solvent  is (l, m)th component of the wavenumber dependent solvent 

orientational dynamic structure factor defined as  
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where N is the total number of solvent molecules. <…> denotes the equilibrium 

ensemble average over all the orientations,Ω .    

 

In our calculation we have adopted the dipolar hard-sphere model for solute and 

solvent, and used mean spherical approximation (MSA) for obtaining microscopic 

static correlation functions and solvent orientational structure factors. The fatal error 

often observed in MSA at 0→k  and ∞→k  limits are corrected properly.1,3  

Combining the expressions of extended hydrodynamic theory and MSA model the 

final expressions for longitudinal ( ),(10 tkSsolvent ) and transverse ( ),(10 tkSsolvent ) 

components of solvent orientational dynamic structure factor are written as1,3 
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and, 
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Here L-1 stands for Laplace inversion. 3Y is the polarity parameter of the solvent 

which is related to the dipole-moment, μ, and density, 0
dρ , of the solvent by the 

relation, 02)3/4(3 dBTkY ρμπ= . εL(k) and εT(k) are the longitudinal and transverse 

components of wave number dependent dielectric function.  ),(∑lm
zk  is the (l, m)th  

component of the generalized rate of orientational polarization density relaxation of 

the solvent. The details of the calculation of ),(∑lm
zk  can be found in Refs. 1 and 4, 

and also in Appendix I. 

 

The (l, m)th component of the solute orientational dynamic structure factor which, for 

a single dipolar solute, is assumed to be given by  
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where the rotational ( s
RD ) and translational ( s

TD ) diffusion coefficients of the solute 

are obtained from liquid viscosity using proper hydrodynamic boundary conditions.       

For an immobile (both rotationally and translationally) solute, s
RD = s

TD =0. Therefore, 

for fixed solute the expression for normalized energy auto correlation function can be 

written as5 
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Appendix III 
 
Derivation of Solvation Response Function, SE(t) 

The total excess free energy functional for a system of dipolar solutes dissolved in a 

liquid consisting of dipoles and ions can be written as1  
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where        πρρδρ 4/),(),( 0
sss −= ΩrΩr ,           πρρδρ 4/),(),( 0

ddd −= ΩrΩr ,     

and 0)()( αααδ nnn −= rr  are the fluctuations of solute dipole, solvent dipole and ion 

densities about their bulk values, respectively. In equilibrium, 

0
),(

)](),,(),,([
=

Δ
Ωr

rΩrΩr

s

ds nF
δρ

ρρδβ α .  Thus, by taking functional derivative of the above 

free energy functional and equating it equal to zero for equilibrium condition we get 

the effective fluctuating potential acting on the solute due to solute (dipole)-solvent 

(dipole) and solute-ion interactions. Subsequent generalization to time domain allows 

one to write the following expression for the time dependent fluctuating effective 

potential energy1 
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As the probe molecules (solute) used in solvation dynamics experiments are present at 

infinite dilution, the term originating from solute-solute interaction are neglected. 

Also, we have assumed that the temporal evolution of   ),,( tV eff
s ΩrΔβ  is originated 

solely from the time dependent fluctuation solvent (dipole) and ion densities.  

Therefore, the expression for the position (r ), orientation (Ω ) and time (t) dependent 

fluctuating solvation energy of the solute is written as  
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                                                                                                                           (AIII.3)                                

The above equation represents the time dependent solvation energy of an immobile 

(both rotationally and translationally) solute. It is shown, however, earlier by Biswas 

and Bagchi that consideration of solute motions accelerates the rate of its own 

solvation. The expression for the position (r ), orientation (Ω ) and time (t) dependent 

solvation energy for mobile dipolar solute with distribution function ),,( ts Ωrρ can be 

written as follows 
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                    ),,(),,( tEtE sisd ΩrΩr Δ+Δ=                                                               (AIII.4)     

  

  where, the energy due to dipole-dipole interaction is given by 

 

),,(),;,(),,(),,( tcddtTktE dsdsBsd ΩrΩrΩrΩrΩrΩr ′′′′′′−=Δ ∫ δρρ                  (AIII.5) 

 

and the energy due to dipole-ion interaction is given by 
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Note that equation (AIII.4) is Eq. 6.1 of chapter 6.   Note that incorporation of solute 

motion via ) ,,( ts Ωrρ in Eq. AIII.6 is somewhat ad-hoc but is physically reasonable. 

The correlation terms ( sdc  and αsc ) convolutes with the fluctuating densities ( dδρ and 

αδn ) to give excess chemical potential, excessμΔ  due to the solute-solvent (dipolar and 

solute-ion) interactions. Therefore, excesss μρ Δ  represents the total energy density felt 

by the solute.2 

 

The time dependent total solvation energy for dipolar solute probe averaged over 

space and angles   is, therefore, given by 

 

      ),,()( tEddtE totaltotal ΩrΩr Δ=Δ ∫                                                                   (AIII.7) 

 

If we define the inverse Fourier transformation as 

 

     )(
)2(

1)( .
3 krk fedf i−∫= kr

π
                                                                           (AIII.8) 

 

where )(rf can be ),,(| ΩΩ|r-r ′′sdc , ),(| Ω|r-r ′αsc , ),,( ts Ωrρ , ),,( td Ωr ′′δρ  or  

),( tn rαδ , and )(kf  are their respective Fourier transforms ),( ΩΩ ′,kcsd , ),( Ωkcsα , 

),,( ts Ωkρ , ),,( td Ωk ′δρ  or ),( tn kαδ , respectively. 

 

Subsequently, Eq. (AIII.7) leads to following expression for the time dependent total 

solvation energy of a dipolar solute probe  

 

)()()( tEtEtE sisdtotal Δ+Δ=Δ                                                                                (AIII.9) 

 

where, 
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Now, ),,( ts Ωkρ , ),,( td Ωkδρ , ),( Ωkcsα  and ),( ΩΩ ′,kcsd  functions are expanded in 

spherical harmonics as follows3 
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Here, k is chosen to be parallel to the z-axis of laboratory fixed frame. The expansion 

of the angle dependent quantities into spherical harmonics, assumed separation of 

time scales between the fluctuating ion and dipole densities and the choice of time-

origin as 0=′t , provides the following expression for normalized solvation response 

function  
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where, )(tSsd  and )(tSsi  are normalized solvation energy auto-correlation function due 

to the dipole-dipole and dipole-ion interactions, respectively. The above equation is 

Eq. 6.3 of chapter 6.  

 

The expression for )(tSsd  finally takes the following form 
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where P denotes the pre-factor, 
2

0

2
2 ⎟
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⎜
⎝
⎛

π
ρ TkB

d . >−=< )(),(),( kAtkAtkS lmlm
lm
solute , is (l, m)th 

component of solute self-dynamic structure factor. NkatkatkS lmlm
lm
solvent /)(),(),( >−=< , 

is (l, m)th component of solvent (dipole) orientational dynamic structure factor, N being 

total number of dipolar particles. 

 

The expression for )(tSsi  is given as  
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where 
βα

αα
αβ

δδ
NN

kntkn
tkS ion >−<

=
)(),(

),(  is the isotropic ion dynamic structure factor 

and αN  the number of αth type ion (cation or anion). Note that equations (AIII.17) 

and (AIII.18) are respectively the Eqs. 6.4 and 6.5 of  chapter 6.  
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Table AIII.1: Solvation characteristics of a few imidazolium and phosphonium ionic 

liquids: Experimental Results 

 
          Ionic Liquid Viscosity 

of the 
Ionic 

Liquid 
 (Poise) 

Dynamic 
Stokes’ 
Shifts  
(cm-1) 

Fraction 
Observed 

obsf  

Average 
Solvation 

Time, 
<τs> (ns) 

Characteristics 
of S(t) 

DCS+[bmim][PF6](a) 
 (Temp. at 298K) 

3.10(b) 4240 1.05 1.0±0.20 Biphasic with τ1~0.3ps, 

τ2~140ps and β~0.31 

DCS+[bmim][BF4](a) 
(Temp. at 298K) 

1.54(c) 4080 1.12 0.34±0.07 Biphasic with τ1~0.3ps, 

τ2~130ps and β~0.41 

C153+[P14,666][Br](d) 
(Temp. at 343K) 

1.16 1590 0.99 5.1±0.4 Stretched exponential 
with single time constant, 
τ~1300ps and β~0.38 

C153+[P14,666][Cl](d) 
(Temp. at 343K) 

1.33 1500 0.93 4.5±0.3 Stretched exponential 
with single time constant, 
τ~1900ps and β~0.46 

C153+[P14,666][BF4](d) 
(Temp. at 343K) 

0.87 1370 1.03 1.98±0.11 Stretched exponential 
with single time constant, 
τ~1010ps and β~0.51 
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Figure AIII.1: Representative fitting of calculated )(tSsi  to various types of decay 

functions. The system shown here is C153 in ]][[ 666,14 BrP  at 343 K. The calculated results 

are shown by circles and the fitted functions by solid lines. The time constants, τ  , 1τ  and 

2τ , are all in picoseconds whereas the average solvation times, sτ , are in nanoseconds. 

Note that similar degree of applicability of all these fitting functions has also been observed 

for other liquids studied here.  For more information see text and Ref. 52 of chapter 6.  
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